Acute Care Physical Therapy

Guest Editor: Sharon Gorman, PT, DPTSc, GCS

Physical Therapy Virtual Conference

<table>
<thead>
<tr>
<th>Date</th>
<th>Topic</th>
<th>Presenter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mon 10/28</td>
<td>A Practical Approach to Managing Socially Complex Patients in Acute Care</td>
<td>Mona Wong, PT, DPT</td>
</tr>
<tr>
<td>Tues 10/29</td>
<td>Beyond Bed Exercise in the Acute Neurologic Population</td>
<td>Angela Rusher, PT, DPT, NCS</td>
</tr>
<tr>
<td>Wed 10/30</td>
<td>ALS in Acute Care: Taking the Fear Out of Hospitalizations</td>
<td>Jennifer Liu, PT, DPT, NCS</td>
</tr>
<tr>
<td>Thurs 10/31</td>
<td>Management of Psychiatric Comorbidities for the Acute Care PT</td>
<td>Emily Fleischman, PT, DPT, GCS</td>
</tr>
<tr>
<td>Fri 11/01</td>
<td>Beyond Burnout: Returning to Satisfaction and Purpose in Health Care</td>
<td>John Corsino, PT, DPT</td>
</tr>
</tbody>
</table>
Beyond Bed Exercise in the Acute Neurologic Population

Angela Rusher, PT, DPT
Board Certified Neurologic Clinical Specialist

October 29, 2019 (12:00 -2:00pm)

Introduction

Angela Baldwin Rusher, PT, DPT
Board Certified Neurologic Clinical Specialist

Instructor/Assistant Director of Clinical Education
Samuel Merritt University

Sr. Neuro Outpatient PT – Kaiser Permanente
Learning Outcomes

After this course, participants will be able to:

- Identify at least three strategies that utilize an interdisciplinary team approach incorporating mobility technology into treatment interventions for improved patient outcomes and discharge planning.
- List at least three therapeutic exercises that maximize trunk balance/control to improve functional outcomes.
- Identify at least three appropriate outcome measures for the acute neurologically involved patient.
- List at least three Aerobic Exercise activities, with focus on appropriate dosing and assessment, for the acute neurologically involved patient.

Defining Acute Neuro Patient

- An individual with a NEW dysfunction and impairment/s
- Where might we treat them?
 - Acute care-hospital; ICU
 - SNF
 - Acute Rehabilitation Unit
 - Home Health
- Goals?
 - To promote optimal functional mobility to discharge to next level of care or link to community resources
Hospitalization Risks – Bed Rest

- 4-5% loss of muscle strength for each week of bed rest
- ICU acquired neuromuscular weakness
- Pressure ulcers
- Bed rest contributes to:
 - Fluid loss
 - Postural hypotension
 - Tachycardia
 - Decreased stroke volume
 - Decreased cardiac output

Hospitalization Risks & Risk for Re-hospitalization Factors

<table>
<thead>
<tr>
<th>Hospitalization Risk</th>
<th>Re-hospitalization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Falls</td>
<td>Results from:</td>
</tr>
<tr>
<td>Delirium/Confusion</td>
<td>- Poor HH care/ SNF</td>
</tr>
<tr>
<td>Hospital acquired infections</td>
<td>- No PT within 30 days of discharge</td>
</tr>
<tr>
<td>Increased disability and mortality</td>
<td>- Racial & socioeconomic disparities</td>
</tr>
</tbody>
</table>
<pre><code> | - Poorly staffed inpatient nursing |
</code></pre>
Rehab = Function

Early vs. Progressive Mobility

EARLY MOBILITY
- Where? ICU
- When? Once medically stable
- Outcomes?
 - ↑ patient function
 - ↓ delirium
 - ↓ time on ventilator
 - ↑ likelihood home D/C

PROGRESSIVE MOBILITY
- Where? All care environments
- When? Throughout course of care
- Outcomes?
 - ↑ patient function
 - ↓ delirium
 - ↓ time on ventilator
 - ↑ likelihood home D/C
Early & Progressive Mobility

- Mobility hallmarks
 - Weight-bearing
 - Progressive Vertical positioning
- Active & Passive devices
 - Passive as a step towards active participation
 - Example = Unresponsive patient
 - Turning schedule
 - Increased head of bed
 - Weight bearing on foot board
 - Bed-in-chair position

Early & Progressive Mobility - Function

- Martinez-Velilla N et al 2019 showed that moderate intensity individualized programs that included walking and balance training 2x/day improved functional outcomes in acutely hospitalized frail elderly
- Lang CE et al 2015 addressed dose and timing in neuro-rehabilitation after stroke
 - Early Contact
 - More intense therapy
Early & Progressive Mobility - Cognition

- Physical Exercise has been shown to improve:
 - Cognitive function such as executive function
 - Verbal fluency

- 5 days of individualized exercise in acute care can help REVERSE cognitive impairment associated with the acutely ill older adult

Physical Therapist Role

- Continued dynamic assessment with rapid decision making for discharge planning considering patient mobility and safety

- Provides critical communication within patient care team
Physical Therapy Goals – Acute Care

- Improve patient mobility
- Maintain patient safety
- Create optimal plan of care
- Appropriate discharge setting per individual patient

Barriers to Early Mobilization

Clinician
- Expectations and knowledge
- Safety concerns surrounding line/tube management
- Environmental influences

Patient
- Hemodynamic instability
- Respiratory instability
- Sedation
- Agitation
- Patient refusal
Rehabilitation – Barriers to Discharge

- Rehab therapist vs. triage therapist
 - How do we change the culture?

Neuro Rehab: What we know

Kleim & Jones: Principles of Plasticity 2008

- Use It or Lose It
- Use It and Improve It
- Specificity
- Repetition Matters
- Intensity Matters
- Time Matters
- Salience Matters
- Age Matters
- Transference
- Interference
Neuro Rehab: What we know

- Endurance
- Supportive Device
- Assistance Given
- Developmental sequence
- Work
- Regional
- Amplitude

- Velocity
- Environmental
- Variability
- Components of Movement
- Task Attention
- Feedback

Early Mobility Technology – What?

Can be found here: https://www.shermanoaksmedical.com/shop/product/liko-sabina-200-electric-sit-to-stand-lift

Integracp [CC BY-SA 3.0] (https://creativecommons.org/licenses/by-sa/3.0)
Early Mobility Technology – What?

- Benefits:
 - Safe
 - Decrease patient effort
 - Decrease clinician burden
 - Accomplishes early mobility
 - Improve patient endurance
 - Improve patient strength
 - Decreases clinician time (5 min less than manual transfers)
 - This includes time needed to locate and set up equipment

Early Mobility Technology- What?

- <$2,000
 - Slide sheet
 - Non-motorized sit-to-stand
 - Cycle ergometer
- $2,000 – $10,000
 - Motorized sit-to-stand
 - Floor lift
 - Tilt table
 - Recliner chair
 - ICU walker
- >$10,000
 - Critical Care Bed
 - Upright Lift Bed
 - Ceiling Lift
Early Mobility Technology – Who?

- Physical Therapists
- Occupational Therapists
- Nursing Staff
- Caregivers/Family Members as appropriate

Early Mobility Technology Interventions

- In Bed
- Around the Bed
- Beyond the Bed
Interventions – Slide Sheet

- Functional Mobility
 - Rolling
 - Lateral shifting
 - Repositioning
 - Patient assist in self care

- Collaborative Team Approach
 - Nursing and Family training to use for bed mobility to allow active patient participation

Interventions – In Bed Slide Sheet
Interventions – Around Bed Slide Sheet

- Transfers
 - While utilizing a transfer board
 - Scooting in bed in long sit
 - Consider posterior scoot into wheelchair/chair/commode

- Seated
 - Anterior/posterior pelvic tilt
 - Lateral pelvic tilting
 - Reciprocal scooting

Interventions – Tilt Table/Upright Tilt Bed/Geri Chair

Interventions – In Bed

Tilt Table/Upright Tilt Bed

- Allows slow progression to upright
- Allows incremental weight bearing for longer duration
- Other exercises can be performed while tilting
- Facilitates arousal and acclimatize patient to position change
- Neuro Patients:
 - Improve: respiration, decrease tone with WB, orientation to upright/head righting, follow commands

Interventions – In Bed

Ceiling Lift

https://www.multicaremedical.co.uk/product/gh3-ceiling-hoist-positioning-lock/

<table>
<thead>
<tr>
<th>Interventions – In Bed Ceiling Lift</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slings</td>
</tr>
<tr>
<td>- Repositioning or Transfer sling</td>
</tr>
<tr>
<td>Functional Mobility</td>
</tr>
<tr>
<td>- “walking” along the bed while hovering</td>
</tr>
<tr>
<td>- Supported upright sitting vs. sling on slack sitting EOB</td>
</tr>
<tr>
<td>- Allows transition from supine to sit in decreased time to work on sitting activities and upright tolerance</td>
</tr>
<tr>
<td>- Add task practice approach - ADLs</td>
</tr>
<tr>
<td>Collaborative Team Approach</td>
</tr>
<tr>
<td>- Have nursing/family incorporate patient participation</td>
</tr>
</tbody>
</table>
Interventions – Around Bed Ceiling Lift

- Slack sling in sitting to improve trunk activation but safe
- Consider walking sling to promote weight bearing

Interventions – Beyond Bed Ceiling Lift vs. Hoyer/Liko Lift

Interventions – Beyond Bed Ceiling Lift vs. Hoyer/Liko Lift

- Expands patient’s environment
- Orientation to executive function (ie: self care tasks)
- Consideration for higher functioning patients should progress towards more independent forms of locomotion.
- Facilitate balance reactions skills (ie: reactive)

Interventions – In & Around Bed Cycle Ergometry

- Systems
 - Cardiopulmonary
 - Musculoskeletal
- Active Participation
 - Assisted cycling
 - Resisted cycling
- Can be set up by nursing staff once appropriate dosing is determined to get increased amount in during the day for improved endurance/strength
 - Adjunct to other skilled PT/OT interventions
Interventions - Around Bed
Sit-to-Stand Device

- Motorized
 - Static standing, transfers, ambulation
 - Therapy & Nursing tasks
 - BP, posterior wound care
- Non-Motorized
 - Can initiate stand, but may buckle

Interventions – Beyond Bed
Sit-to-Stand

- Transfers to bathroom or another part of the room for self care
- Some allow for ambulation
- Initiation of weight bearing activities in an absence of normalized strength
Interventions – Around Bed

Others

- Wheelchairs
 - Pressure relief, LE mobility, seated ADLs
 - Seated therex, posture, UE strengthening
 - Balance, reaching out of BOS
- Cardiac Chair
 - Improve upright tolerance, progressing to seated positions
- Walking device (FWW, SPC, etc.)
 - Side stepping along the bed
 - Standing tolerance
 - Balance

Target the Trunk

- Proximal trunk control is pre-requisite for balance, distal limb control, and functional activities
- Early predictor for improved functional outcomes after stroke
- Spending time focusing on the trunk in acute care can help prepare a patient to progress functionally in their next discharge location.
Low Tech – Target the Trunk

- Deshmukh & Kumar 2018
 - Compared trunk exercises with swiss ball vs. on bed in 40 people with stroke.
 - Six 45 min sessions a week for 2 weeks
 - Results found swiss ball exercises more effective than plinth exercises on trunk balance
 - Why swiss ball?
 - Postural perturbation with reactive balance responses in the trunk
 - Increased trunk lateral flexion and trunk rotation (compared to plinth exercises)

Trunk Control - Physioball

- Exercises:
 - Supine
 - Pelvic bridging
 - Unilateral bridging
 - Trunk rotation
 - Seated
 - Static sitting balance
 - Trunk flexion
 - Trunk extension
 - Trunk lateral flexion
 - Trunk rotation
Now we know what to do, but how do we measure it?

Outcome Measures – Bed Level

- AM-PAC score (Activity Measure for Post-Acute Care Inpatient Short Form
 - Designed to assess from completely DEPENDENT to INDEPENDENT
 - The Short Form is often used – can be answered by patient or surrogates or PT’s opinion on how they would perform.
- FIST = function in sitting
- 5x sit to/from stand
Outcome Measures – Ambulatory

- Gait Speed
 - Quick measure of gait
 - Able to determine category of fall risk and level of mobility
- 6 minute Walk Test
- TUG
- DGI vs. FGA
 - Assesses higher level balance
 - Appropriate to help support need for Acute Rehab for ambulatory patients
 - Con = need stairs, cone, and blocks

Tracking Progress Objectively

- Time
 - Cycle Ergometry time
 - Endurance
 - How long for each functional activity (transfers, bed mobility, etc.)
 - Shows efficiency
 - Weight Bearing or Tilt bed angle & Time
 - Endurance; Upright tolerance
Tracking Progress Objectively

- Distance
 - Forward, backward, lateral along the bed
 - Rest breaks sitting vs. standing? How many?
- Assist level
 - With/without assistive device?
 - Assist provided?
 - How many therapists?
 - Use of mobility technology?
 - How much support used?
 - Sling on slack?

Aerobic Exercise in Acute Care?
Aerobic Exercise Application

- Aerobic Exercise (AE) improves aerobic capacity and reduces morbidity in neurologic populations
 - Contributes to other health benefits
- Application of AE in adult neuro-rehabilitation is often challenging
 - Barriers and perceived barriers
 - Lack of adaptive equipment
 - Lack of screening tools
 - RPE often used along with heart rate monitoring

Post CVA AE Training Parameters

- Interventions
 - Walking (treadmill, overground)
 - Stationary cycle
 - UE and/or LE ergometry
 - Seated stepper (Nu-Step)
- Parameters
 - 40-70% peak O2 uptake
 - 40-70% HRR
 - 50% - 80% Hrmax
- Parameters (cont)
 - RPE 11-14
 - 3-7 days/week
 - 20-60 min/session (at least 10 min bouts)
- Outcome Measures
 - VO2
 - 6 min walk test
 - 10 meter walk test
 - RPE
 - SF 36
 - Stroke Impact Scale
Post SCI AE Training Parameters

- BWSTT
 - Ranges between 60-300 min/wk
 - 3-23 weeks
 - Enhances functional ambulation in ASIA C & D

- UE Ergometry
 - Intensity threshold of 70% HRmax
 - 20 – 60 min/day
 - 3 days/wk
 - 6-8 wks

- Functional Electrical Stimulation
 - 3 days/wk for 8 weeks

Neurodegenerative AE Training Parameters

Multiple Sclerosis
- Interventions
- Parameters
 - 50-70% VO2max
 - 60-80% of Hrmax
 - RPE 12-14
 - 10-60 min
 - 2-3 days/wk

Parkinson’s Disease
- Parameters
 - ≥ 150 mins moderate intensity/week
 - ≥ 75 mins of vigorous intensity/week – OR –
 - Combo of both
 - 3 days moderate + 2 days vigorous intensity
Neurodegenerative AE Training Parameters

<table>
<thead>
<tr>
<th>ALS</th>
<th>Huntington’s Disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Aerobic activities at submax levels</td>
<td>• Use RPE, monitor vitals, S/S</td>
</tr>
<tr>
<td></td>
<td>• 3x/wk</td>
</tr>
<tr>
<td></td>
<td>• 30 min/sessions</td>
</tr>
<tr>
<td></td>
<td>• 50-80% HRmax</td>
</tr>
</tbody>
</table>

AE: When should you stop?

- Indications to terminate exercise session
 - Any abnormal response
 - New onset of ataxia
 - Dizziness, c/o feeling faint
 - Pt appears pale or cyanotic
 - Marked fatigue, SOB or wheezing
 - Severe leg cramps
 - C/o chest pain
 - The patient desires to stop!
Take Home Messages

- Safe Patient Handling Mobility Tech
 - ↓ Therapist burden
 - ↓ Patient effort
 - ↑ Efficiency
 - ↑ Early mobility/Progressive mobility participation
 - ↑ interdisciplinary approach/collaboration
- Low tech equipment can enhance patient outcomes (target the trunk). Don’t be afraid to use in Acute Care!

Take Home Messages

- Aerobic Exercise should be considered in any neuro-rehabilitation program
- Use outcome measures to support your interventions to show need for rehab instead of triage
Thank You

- Special Thanks to Dr. Sharon Gorman for her mentoring and support in developing this course

- Thank you, Dr. Kristen Ikeda for contributions to the Aerobic Exercise training parameters.

References

- Please see attached PDF for References
Questions??

Physical Therapy Virtual Conference

Mon 10/28 A Practical Approach to Managing Socially Complex Patients in Acute Care
 Mona Wong, PT, DPT

Tues 10/29 Beyond Bed Exercise in the Acute Neurologic Population
 Angela Rusher, PT, DPT, NCS

Wed 10/30 ALS in Acute Care: Taking the Fear Out of Hospitalizations
 Jennifer Liu, PT, DPT, NCS

Thurs 10/31 Management of Psychiatric Comorbidities for the Acute Care PT
 Emily Fleischman, PT, DPT, GCS

Fri 11/01 Beyond Burnout: Returning to Satisfaction and Purpose in Health Care
 John Corsino, PT, DPT