If you are viewing this course as a recorded course after the live webinar, you can use the scroll bar at the bottom of the player window to pause and navigate the course.

This handout is for reference only. Non-essential images have been removed for your convenience. Any links included in the handout are current at the time of the live webinar, but are subject to change and may not be current at a later date.
Technical issues with the Recording?

- Clear browser cache using these instructions
- Switch to another browser
- Use a hardwired Internet connection
- Restart your computer/device

Still having issues?

- Call 866-782-6258 (M-F, 8 AM-8 PM ET)
- Email customerservice@PhysicalTherapy.com
Translation of Gait Analysis to Interventions for Gait Recovery in Persons with Neurological Disorder

Jill Seale, PT, PhD, NCS
Physicaltherapy.com

Learning Outcomes

- Synthesize gait examination and evaluation to target impairments and activities for intervention.
- Integrate the concept of task specificity into gait retraining to target gait deviations
- Apply current best research evidence to current practice in gait retraining to achieve holistic gait recovery
- Evaluate how the use of orthotic devices and assistive devices impact gait retraining interventions
- Utilizing video patient cases, create appropriate plans of care for targeting gait recovery
Critical Ingredients in Gait Analysis

- Outcome measures across ICF
- Outcome measures that match goals
- Outcome measures that are as objective as possible
- Accurate observational analysis
- Hypothesis driven examination of impairments
- Attention to detail at all levels!

Gait Analysis SHOULD Impact Treatment and POC

- GA significantly influences the therapeutic planning and reinforces decision-making in persons in chronic post stroke phase
- Clinical examination plus 3-D gait analysis
- Treatment implications for surgery, BTx, orthotic management, and physiotherapy
Stance Limb

Deviation
- Absent or diminished heel strike
- Excessive DF in stance
- Excessive PF in stance

Impairment
- Tight or spastic PFs; weak DF; sensory dysfunction (not likely)
- Weak PF; hamstring contracture
- Tight, spastic, or weak PF; weak quads (if early); hip flexor contracture; quadriceps spasticity (not likely)
Stance Limb

Deviation
- Knee hyperextension (thrust) during stance
- Knee wobble during stance
- Excessive knee flexion during stance

Impairment
- Tight, spastic, or weak PF; quad weakness (if early); hip flexor contracture
- Weak PF; weak quads (less likely); sensory dysfunction
- Weak PF; tight or spastic PF (less likely); hamstring contracture

Stance Limb

Deviation
- Trendelenberg
- Excessive hip external rotation
- Excessive lateral lean
- Excessive posterior lean
- Excessive hip and trunk flexion

Impairment
- Weak hip abductors
- Tight ERs; compensation for tight PFs
- Weak contralateral swing
- Weak contralateral swing
- Tight hip flexors; weak hip extensors
Stance Phase

Deviation
- Weightbearing on lateral border of the foot
- Weightbearing on medial border of the foot
- Vaulting

Impairment
- Foot/ankle instability; contralateral swing dysfunction
- Foot/ankle instability (less likely); compensation for tight PFs
- Contralateral swing dysfunction

Swing Phase

Deviation
- Decreased clearance during swing (tripping or dragging)
 - Decreased dorsiflexion during swing
 - Decreased knee flexion during swing
 - Decreased hip flexion

Impairment
- NOT JUST FOOT DROP
- Tight or spastic PF; weak DF
- TSt dysfunction; tight or spastic quads; weak hamstrings (least likely)
- Weak hip flexors (or just slow); tight/spastic extensors (less likely)
Swing Phase

Deviation
- Excessive lateral lean
- Excessive posterior lean
- Excessive hip and trunk flexion
- Excessive hip external rotation
- Hip-hiking
- Circumduction
- Vaulting

Impairment
- Compensation for weak swing
- Hip flexor tightness; weak hip/trunk extensors
- Tight ERs; weak IRs or psoas
- Compensation for weak swing

Swing Limb

Deviations
- Scissoring
- Absent or diminished heel strike

Impairment
- Tight/spastic abductors; sensory dysfunction
- Weak DF; lack of full knee ext at terminal swing
Rehabilitate all the Components

Bowden, Embry, Gregory, 2011
Strength Training

- Moderate evidence to support improvement in gait efficiency
- Questionable transference of strength gains to function
- Training needs to be specific
- Fair to strong evidence supporting increased strength, gait speed, improved functional outcomes, and improved quality of life (without increase in spasticity)

Task Specificity

- Task-specific training can be defined as the **systematic** and **repetitive practice** of **functional tasks** that can be performed **within the stroke survivor’s level of available voluntary motion**
 - Weinstein et al, 2004

- But how do we apply task specificity to therapeutic exercise?
- Do we even need to?
- Is that possible?
Task Specificity in Therapeutic Exercise… How to begin

- Analyze task and find deficits
- Hypothesize causative impairments for identified deficits
- Test out hypotheses to ID causative impairments
- What is the norm, in terms of motor activity, ROM, sensation, etc…?

Example:
Plantarflexors weakness in gait

- What is norm?
 - Peak firing from loading response through terminal stance
 - Type of contraction: Eccentric primarily
 - Position of limb is closed chain
 - Range of motion: from position of 5° plantarflexion to 10° dorsiflexion
 - Degree of difficulty: HIGH (long lever high, torque demand, controlling body weight)
So what would task specific ther-ex look like?

- Ther ex would match the key characteristics of the task:
 - Type of contraction
 - Range of motion
 - Training to fit demand: load, repetition, lever arm

How do we usually strengthen plantarflexors?
Plantarflexor Strengthening for Improving Gait

Example:
Stretching Plantarflexors
Example:
Dorsiflexor weakness in gait

- What is norm?
 - Firing from mid PSw through LR
 - Type of contraction: Concentric in swing, eccentric in LR
 - Position of limb is open chain in swing, closed chain in LR
 - Range of motion: from 15° plantarflexion to 0° dorsiflexion to 5° plantarflexion
 - Degree of difficulty: Moderate (short lever, mostly open chain, on for long period of time)

Does this work for us?
What else is necessary in addition to task specificity?

Table 4: Frequency and Numbers of Repetitions in Categories and Subcategories, Pooled Across All Seven Sites

<table>
<thead>
<tr>
<th>Category</th>
<th>Sessions Observed, n</th>
<th>Sessions Observed, Percent</th>
<th>Repetitions Mean, n</th>
<th>95% Confidence Interval of the Mean</th>
<th>SD</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper extremity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Active exercise</td>
<td>118</td>
<td>73</td>
<td>54</td>
<td>41–68</td>
<td>75</td>
<td>1–541</td>
</tr>
<tr>
<td>Passive exercise</td>
<td>67</td>
<td>41</td>
<td>33</td>
<td>22–44</td>
<td>45</td>
<td>1–246</td>
</tr>
<tr>
<td>Sensory</td>
<td>29</td>
<td>18</td>
<td>13</td>
<td>8–19</td>
<td>15</td>
<td>1–71</td>
</tr>
<tr>
<td>Functional</td>
<td>93</td>
<td>61</td>
<td>32</td>
<td>20–44</td>
<td>56</td>
<td>1–420</td>
</tr>
<tr>
<td>Lower extremity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Active exercise</td>
<td>160</td>
<td>70</td>
<td>75</td>
<td>58–93</td>
<td>113</td>
<td>1–802</td>
</tr>
<tr>
<td>Passive exercise</td>
<td>63</td>
<td>27</td>
<td>12</td>
<td>9–10</td>
<td>14</td>
<td>1–68</td>
</tr>
<tr>
<td>Sensory</td>
<td>10</td>
<td>4</td>
<td>10</td>
<td>4–15</td>
<td>8</td>
<td>1–25</td>
</tr>
<tr>
<td>Functional</td>
<td>20</td>
<td>7</td>
<td>6</td>
<td>2–10</td>
<td>10</td>
<td>1–34</td>
</tr>
<tr>
<td>Gait</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Episodes</td>
<td>193</td>
<td>84</td>
<td>6</td>
<td>5–6</td>
<td>5</td>
<td>1–39</td>
</tr>
<tr>
<td>Stairs</td>
<td>193</td>
<td>84</td>
<td>357</td>
<td>296–418</td>
<td>432</td>
<td>3–2614</td>
</tr>
<tr>
<td>Stair climbing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Episodes</td>
<td>50</td>
<td>22</td>
<td>3</td>
<td>2–4</td>
<td>2</td>
<td>1–12</td>
</tr>
<tr>
<td>Stairs</td>
<td>50</td>
<td>22</td>
<td>38</td>
<td>31–45</td>
<td>26</td>
<td>2–122</td>
</tr>
<tr>
<td>Transfers</td>
<td>219</td>
<td>70</td>
<td>11</td>
<td>9–13</td>
<td>12</td>
<td>1–78</td>
</tr>
<tr>
<td>Balance</td>
<td>147</td>
<td>47</td>
<td>27</td>
<td>19–35</td>
<td>48</td>
<td>1–432</td>
</tr>
</tbody>
</table>

All values rounded to the nearest whole number.
*Total number of observed sessions=312. Denominators used to calculate percentage of observed sessions were as follows: upper extremity subcategories, n=162; lower extremity subcategories, gait and stairs, n=230; transfers and balance, n=312; see Methods section for explanation.

Lang et al 2009
Intensity…
How do we manipulate it?

– Repetition
– Time in therapy
– Frequency of therapy
– Cardiovascular response
– RPE
– Functional
– Challenging
– Load
– Speed

But…how much is enough?

Does the dosage change the overall response?

DOSE
vs.
RESPONSE
Change intensity, change response!

Results:

• Conventional PT:
 – Average # of steps during session: 886 steps
 – Average of 3,822 steps/day before conventional PT; no change after intervention

• Locomotor Training:
 – Average # of steps during session: 3,896 steps
 – Average of 5,560 daily steps after discharge from LT
 – Significant improvement in gait speed & gait efficiency

Moore et al, 2010
What about the P word?

- What is the best time frame for retraining function?
- Is recovery possible in chronic stages?
- What is a plateau?
 - Common in all areas of neuromuscular performance
 - Achieving an adaptive state
 - Stable training stimulus = stabilization of max performance
 - Not indication of diminished capacity for motor improvement

Breaking through the Plateau

- What can we do when patient plateaus?
 - Expect recovery
 - Periodization
 - Adjust exercise delivery so that positive adaptations continue
 - Modify intensity, session duration, changing routine, etc…
 - Task specific, repeated practice protocols
 - CHALLENGING exercise regimens
Task Oriented Circuit Training

- Group setting training
- Beneficial for improving mobility
- Contradictory results:
 - More effective for improving walking distance, time, and speed compared to other exercise
 - Improvements in gait endurance, no changes in walking amount or rate; gains lost in 3 months
 - English and Hillier, 2010
 - Mudge, 2009

Task Oriented Circuit Training

- Meta-analysis
- Large and significant effects for lower extremity strengthening, gait velocity, gait endurance, balance
- Acute/subacute as well as chronic stages
- Connecting strength improvements to functional improvements
- Even with minimal dose
 - Knox et al, *Clin Rehabil*, 2018
In sample of stroke survivors 1 year post stroke, only 50% could complete 6 minute walk

Those who completed the walk did so at only 40% of predicted distance

Strong relationship between endurance as measured by 6 minute walk and community integration

Increasing endurance could reduce handicap
Balance

Sherrington et al., 2008

Sherrington et al., 2008

Proposed model

Walking capacity

Balance

Falls risk

(a)

(b)
Aerobic Training

- Aerobic exercise-induced increase in BDNF
- Increased BDNF may facilitate motor learning and neuroplasticity
- Also a benefit to cognitive function
- Improves efficiency and reserve
- Priming for Neuroplasticity

MS Recommendations

- Deficits should be addressed to improve energy efficiency and reduce falls
- Compensation using appropriate assistive devices, bracing and wheelchairs may be necessary
- Rehab can make positive impact on quality of life and independence

Mang et al, Phys Ther, 2013
Parkinson’s Specific Considerations

- Aerobic and strength training exercises improve aerobic capacity, walking, strength, posture and balance
- Questions that remain: exercise intensity and medication on/off timing
- Exercise improves both motor (gait, balance, strength) and nonmotor (depression, apathy, fatigue, constipation)
 - Van der Kolk NM, King, *Mov Disord*, 2013
Historical Orthotic Management of Persons with Stroke

- 22% of patients receiving stroke rehabilitation were discharged with an ankle foot orthosis (AFO)
- Patients who were most impaired in motor, walking, and balance functions typically received an AFO.
- Controversial
- Orthotic use discouraged due to perception that their use prevents or delays recovery
- Pre-fabricated PLS often provided in acute care

Current Trends – PTs

- Reluctance to provide solid ankle device; don’t recognize the need to substitute for weak plantarflexors
- Philosophy on orthotics: wait to prescribe, try to do without
- Misconception that orthotics diminish muscle activity and somehow inhibits recovery
 - “Do as little as possible because you know everything you limit in brace is actually taking away something that’s normal”
 - “I try to stay away from them as much as possible to maximize recovery”
- Seale J, Utsey C, unpublished data
Orthotic Impact on Gait

- Improve quality of gait, improve gait speed, and reduce energy expenditure during ambulation.
- Immediate improvements in functional ambulation categories
- Immediate improvements in gait speed, quality, and endurance
- Increased step or stride length

Orthotic Impact on Balance and Other Function

- Immediate improvements in balance
- Decreased fall risk
- Not detrimental to stair climbing and sit<>stand
- Less postural sway, improved weight distribution symmetry
- No data on impact on quality of life or participation
Effect of AFOs on Muscle Activation

- **Literature Review**
 - 11 studies in individuals with neurological disorders
 - Diagnoses included: CVA, SCI, peripheral “foot drop”, & children with CP
 - Electromyography (EMG) of LE muscles while walking with & w/out AFOs
 - Multiple types of AFOs investigated (solid, hinged, oil-damper, PLS, etc)

- **Weaknesses of the Literature**
 - Variability in muscles tested
 - Variability in braces tested
 - Only 1 long-term outcome
 - Some used surface electrodes, some used intramuscular electrodes
 - Variability in data collected and analyzed

Effect of AFOs on Muscle Activation

Summary of the Evidence

- Of the 11 studies:
 - 6 showed equal or more normalized EMG in AFO
 - 4 showed less normalized EMG in AFO
 - 1 showed equal, more normalized, and less normalized EMG in AFO depending on the muscle tested
 - No notable trend toward the rigidity of the brace resulting in more or less normalized EMG

- **No clear evidence that:**
 - AFOs decrease muscle activation in individuals with neurological disorders
 - More rigid braces exaggerate any possible negative side effects of bracing
 - There is a long-term detriment to muscle activation, function, or impairments
Assistive Devices

- Goal is least supportive device that promotes continuous walking with most normal pattern

Becoming a Master Manipulator

Newell, 1991
Video Case 1

- Major gait deviations
- Likely causes
- How do we treat?
 - Strength
 - ROM
 - Endurance
 - Balance
 - Task specific function
Video Case 2

- Major gait deviations
- Likely causes
- How do we treat?
 - Strength
 - ROM
 - Endurance
 - Balance
 - Task specific function
Video Case 3

- Major gait deviations
- Likely causes
- How do we treat?
 - Strength
 - ROM
 - Endurance
 - Balance
 - Task specific function
Questions?

jseale27@sbcglobal.net