If you are viewing this course as a recorded course after the live webinar, you can use the scroll bar at the bottom of the player window to pause and navigate the course.

This handout is for reference only. Non-essential images have been removed for your convenience. Any links included in the handout are current at the time of the live webinar, but are subject to change and may not be current at a later date.
Technical issues with the Recording?

- Clear browser cache using these instructions
- Switch to another browser
- Use a hardwired Internet connection
- Restart your computer/device

Still having issues?

- Call 866-782-6258 (M-F, 8 AM-8 PM ET)
- Email customerservice@PhysicalTherapy.com
Comprehensive Gait Examination and Evaluation in Persons with Neurological Disorders

Jill Seale, PT, PhD, NCS
Physicaltherapy.com

Learner Outcomes

§ Identify key components of a comprehensive pathological gait analysis for patients with neurological disorders, including outcome measures

§ Identify the common gait deviations/gait patterns present in pathological gait for each of the common neurological injuries or diseases

§ Hypothesize probable causative factors for specifically identified gait deviations in pathological gait

§ Formulate a hypothesis-driven gait analysis of patients (video cases) with neurological disorders
Goals of Normal Gait

- Movement along desired path
- Maintaining weight bearing stability
- Conserving energy
- Absorbing shock

Norms

- Cadence: steps per minute (113-116)
- Velocity: 82 m/min or 1.37 m/sec
- BOS: 2-4”
- Toe out: 7°
- Stance phase: 62% of gait cycle
- Swing phase: 38% of gait cycle
- Single limb support: 80% of time
- Double limb support: 20% of time
Weight Acceptance

- Forward progression
- Stability
- Shock absorption

- Initial Contact and Loading Response

Single Limb Support

- Stability
- Forward progression

- Mid stance and terminal stance
Swing Limb Advancement

- Foot clearance
- Limb advancement

- PSw, ISw, MSw, TSw

What is the common factor???

Forward Progression
Stance versus Swing

Examine Both Sub Phases

- SINGLE LIMB INSTABILITY IN STANCE
- IMPAIRED LIMB CLEARANCE IN SWING
Pathological Gait Analysis

- Compare patient to normal
- Segmental
- Start distal, work proximal
- ID major problems that prevent accomplishment of 3 functional tasks (what were these?)
- Major versus minor deviations

Various conditions of gait

- Environment
- Multi tasking
- Varying load
- Speed demands
Hypothesis Drive Examination and Evaluation

- Distinguishing major from minor deviations
- Prioritizing problems
- Hypothesize the causative factors for each major gait deviation
- Test those hypothesis
- Re-assess post intervention and repeat process as necessary
Observational analysis

- Advantages
- Disadvantages
 - Moderate reliability at best
 - How do we maximize accuracy?

Gait Analysis:
GAIT ANALYSIS: FULL BODY EXAMPLE

RANCHO LOS AMIGOS NATIONAL REHABILITATION CENTER PHYSICAL THERAPY DEPARTMENT

Reference Limb:

<table>
<thead>
<tr>
<th>Major Deviation</th>
<th>Minor Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trunk</td>
<td></td>
</tr>
<tr>
<td>Pelvis</td>
<td></td>
</tr>
<tr>
<td>Hip</td>
<td></td>
</tr>
<tr>
<td>Knee</td>
<td></td>
</tr>
<tr>
<td>Ankle</td>
<td></td>
</tr>
<tr>
<td>Toes</td>
<td></td>
</tr>
</tbody>
</table>

Major Problems:

- (WJ) Weight Acceptance
- (SLA) Single Limb Support

(SLA)

- Weight Acceptance
- Single Limb Support

Excessive UE Weight Bearing

Gait Analysis Form

© 2000 CARE, Rancho Los Amigos National Rehabilitation Center, Downey, CA 90242
An example....

- Billy Bob has left hemiplegia and has impaired swing limb clearance.
- His MD says he has “drop foot”
- You prescribe an AFO that limits plantarflexion to neutral (ie substitutes for the dorsiflexors)
- Unfortunately, Billy Bob walks essentially the same, with or without the AFO
- What’s the problem?
Temporal and Spatial Measures

- Gait Speed
 - 10 m walk
- Cadence
- Endurance Measures
 - 2, 6, 12 minute walk
 - 6MWT has strongest correlation with step activity
 - Mudge S, Stott NS, Arch Phys Med Rehabil, 2009
- Gait Symmetry
- Combination Measures
 - TUG
 - Berg Balance Test
 - DGI or FGA
 - Tinetti Gait and Balance Scale

Other Instrument Measures

- GAITRite
- Shoe Inserts
- Step activity monitor/pedometer
- Motion Analysis
- Forceplate Analysis
- EMG Analysis
What about Measures of Participation?

- QOL improves with increases in gait speed
- Relationships between QOL and gait parameters
- Determinants of Community Ambulator
- Link to cost and caregiver burden

Pathological Mechanisms

- 5 Functional Categories
 - Deformity
 - Muscle weakness
 - Sensory Loss
 - Pain
 - Impaired Muscle Control
Deformity

- Lack of sufficient passive mobility
- Can’t achieve normal postures and ROM necessary for walking
- Contracture most common cause
- Structure change in connective tissue component of muscles
 - Elastic
 - Rigid

Deformity in Stance

- PF contracture
- Knee flexion contracture
- Hip flexor contracture
- Adductor contracture
Deformity in Swing

- PF contracture
- Knee flexion contracture
- Adductor contracture

Sensory Loss

- Primarily problems with proprioception
 - Inconsistent gait pattern
 - Intact motor – substitutions for lost sensation
 - Impaired motor + sensory loss = inability to substitute
- Perceptual deficits
- Balance disorders can be consequence of both motor control and/or sensory dysfunction
Pain

- Reactions to pain can cause deformity and muscle weakness
- Deformity: resting postures
- Muscle weakness: reduced activity, protective reflex

Muscle Weakness

- Weakness and/or insufficient recruitment or activation
- Origin of weakness:
 - Upper motor neuron lesion
 - Lower motor neuron lesion
 - Muscle pathology
- More than MMT grade
 - Muscle endurance
 - Lever length
Muscle Weakness in Stance

- Quadriceps weakness – hyperextension early in stance (IC or LR); inability to accomplish LR
- Plantarflexor weakness – extensor thrust in MSt to TSt OR excessive ankle DF throughout
- Hip extensor weakness – excessive hip flexion at IC and LR
- Hip abductor weakness - contralateral pelvic drop MSt
- Anterior tibialis – foot slap at LR
PF Weakness in Stance
Muscle Weakness in Swing

- Anterior tibialis weakness – flat foot or forefoot IC; decreased foot clearance throughout swing
- Knee flexor weakness – decreased knee flexion in MSw to TSw
- Knee extensor weakness – doesn’t achieve full extension at TSw
- Hip flexor weakness – difficulty initiating PSw and ISw (lack of balance between flexors)
- Bottom line: Poor limb clearance

Impaired Motor Control

- In those with upper motor lesion
- Combination of:
 - Muscle weakness
 - Impaired selective control
 - Emergence of primitive locomotor patterns
 - Spasticity
Dynamic Systems Theory

- Movement emerging out of constraints on the system
 - Individual
 - Task
 - Environment

Upper versus Lower Motor Neuron Gait

- Upper motor neuron lesion
 - Increased tone
 - Little to no muscle wasting
 - Muscle weakness
 - Hyperreflexia

- Lower motor neuron lesion
 - Flaccid (or low tone)
 - Significant, rapid muscle wasting
 - Decreased or absent reflexes

- Possible to have mixed
CVA and TBI
Clinical Presentation

- Knee instability
- Impaired balance, impaired or absent sensation
- Decreased walking speed
- Increased energy expenditure
- Spasticity
- Decreased selective motor control

Gait Disturbance in Stroke

- “mixture of deviations and compensatory motion dictated by residual functions”
 - Balaban B, Tok F, PM R, 2014
- Spatio-temporal parameters and sagittal kinematic waveforms change over several trials of gait analysis
 - Increased gait speed
 - Decrease in gait variability
Typical Foot/Ankle Abnormalities

- **Swing phase**
 - Poor swing limb clearance
 - Equinovarus posture
 - Poor prepositioning for initial contact

- **Stance phase**
 - Foot flat or forefoot contact
 - Medial/lateral instability
 - Varus ankle
 - Lack of pronation
 - Lack of dorsiflexion
 - Absent first rocker
 - Absent or impaired second, third, and forth rocker

Typical Knee Abnormalities

- **Instability**
 - Poor tibial control and/or quadriceps weakness
 - Knee buckling

- **Compensations for knee instability**
 - Forward trunk lean
 - Knee hyperextension
 - Hyperextension could be from weak quadriceps but in patients with CVA/TBI, more likely cause is weak plantarflexors

Can you understand why weak plantarflexors would lead to knee hyperextension?
Typical Hip and Pelvis Abnormalities

- Hip weakness
 - Forward trunk lean to help stabilize knee
 - Increases energy costs and shortens step length
- Pelvic retraction
 - Decreases momentum that can be generated
 - Makes hip flexion activation more difficult
 - Again causes decrease in step length

Fish et al, 1999

Head, Arm, Trunk Abnormalities

- Lateral trunk lean
 - Over-reliance on sound side
 - Lean away from weaker side to assist with swing
- Forward trunk lean
 - Often due to knee instability
- Decreased arm swing
 - Often due to decreased gait speed, but lack of trunk and pelvic rotation contribute to this

Fish et al, 1999
Spinal Cord Injury

- Depends on: level of injury, degree of motor and sensory sparing
- Often bilateral presentation of symptoms, but potentially not symmetrical
- Alterations in muscle tone... often more flexor hypertonicity in the LEs
- Compensatory versus restorative
Multiple Sclerosis

- Ataxia
- Sensory loss
- Fatigue
- Hypertonicity
- Weakness
- Unilateral or bilateral deviations and impairments
 https://www.youtube.com/watch?v=b3tv5OUmigc
 https://www.youtube.com/watch?v=1_4Lv2EXW4s

Multiple Sclerosis

- Slower preferred speed
- Longer double limb support
- Decreased swing times
- Wider BOS
- Able to capture these changes even in persons with mild MS
Abnormal Dynamics in Walking Patterns - MS

- Linear decline in walking speed in 12MWT
- Robust correlation with subjective fatigue
- Even those with mild disability differed significantly from controls in walking speed
- Degree of U-shape attenuated in persons with MS
 - Burschka JM et al, BMC Neurol, 2012

Evaluating walking in MS

- Timed 25’ walk
- Patient self-report 12-Item MS Walking Scale
- Dynamic Gait Index
- TUG
- 2- or 6-minute walk test
 - Quantify fatigue
 - Bethoux F, Bennett S, Int J MS Care, 2011
Parkinson’s Disease

- Very narrow BOS
- Poor weight shift
- Decreased step length
- Decreased gait speed
- Increased number of steps per distance
- Festinating or retropulsive gait
- Difficulty with transitions

FALLS

PD – Relationship between Gait and Postural Stability

- Both gait analysis and computerized dynamic posturography are important to assess
 - Postural stability seen in early and late PD
 - May help ID PD earlier
- Visual feedback-based balance training improves gait AND postural instability in early PD
Gait characteristics and falls

- Systematic review of literature on walking biomechanics and falls in persons with PD
- Higher risk for falls in those with:
 - Slower walking speed
 - Lower cadence
 - Shorter strides
 - More mediolateral head and pelvis motion
 - Creaby MW, Cole MH, Parkisonism Relat Disord, 2018
Diabetic Peripheral Neuropathy

- Gait deviations consistent with sensory loss (what are they)
- Impaired swing limb clearance
- Potential instability in stance
- Pain with gait
- Neuropathy may not be only cause of gait deviations in persons with DM

Motor Neuron Disease

- Examples
- What do you need to know?
- Then what?
Cerebral Palsy

- Diminished heel contact
- Flexion at knees and hips
- Hyperextension of trunk
- Plantarflexed ankles
- Scissoring

How do we improve our gait assessment?
Video Case 1

- ID major gait deviations
- Hypothesize causative factors
- Examine potential causative factors
- Identify potential outcome measures
Video Case 2

- ID major gait deviations
- Hypothesize causative factors
- Examine potential causative factors
- Identify potential outcome measures
Video Case 3

- ID major gait deviations
- Hypothesize causative factors
- Examine potential causative factors
- Identify potential outcome measures
Questions?

jseale27@sbcglobal.net