- If you are viewing this course as a recorded course after the live webinar, you can use the scroll bar at the bottom of the player window to pause and navigate the course.
- This handout is for reference only. Nonessential images have been removed for your convenience. Any links included in the handout are current at the time of the live webinar, but are subject to change and may not be current at a later date.

continued

© 2018 continu**ed**® No part of the materials available through the continued.com site may be copied, photocopied, reproduced, translated or reduced to any electronic medium or machine-readable form, in whole or in part, without prior written consent of continued.com, LLC. Any other reproduction in any form without such written permission is prohibited. All materials contained on this site are protected by United States copyright law and may not be reproduced, distributed, transmitted, displayed, published or broadcast without the prior written permission of continued.com, LLC. Users must not access or use for any commercial purposes any part of the site or any services or materials available through the site.

Aquatic Lumbar Stabilization Progressions

Beth Scalone, PT, DPT, OCS, ATRIC www.waterpt.com
Beth@waterpt.com

continued

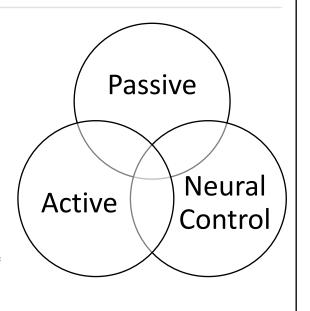
Objectives

- Distinguish between global and local muscles and their role in spine stabilization exercise.
- List at least three key components to exercise for each of the three phases of spine stabilization.
- Outline at least three exercises to target specific and combined planes of movement

Objectives cont.

- Describe at least three therapeutic benefits for deep and shallow aquatic exercise in the treatment of lower back dysfunction.
- Identify at least one of the latest aquatic therapy research in treating patients with spinal dysfunction.

CONTINU ED



Panjabi's model

Spinal stability has 3 subsystems

- 1. Osteoligamentous (passive)
- 2. Muscle (active)
- 3. Nervous system (neural control)

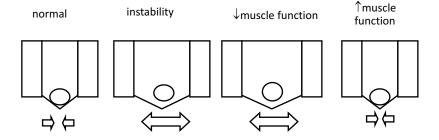
Spinal stability within this model depends on proper functioning and interaction of all 3 subsystems

continued

Clinical Instability

Dysfunction in one or more of the subsystems leading to increase in the neutral zone

Characterized by pain, description of "back goes out"


May or may not have objective findings on radiological exam.

Neutral VS. Elastic Zone

Neutral zone = spinal motion produced with minimal internal resistance by passive structures

Elastic zone = motion produced against significant resistance from passive tissues

continued

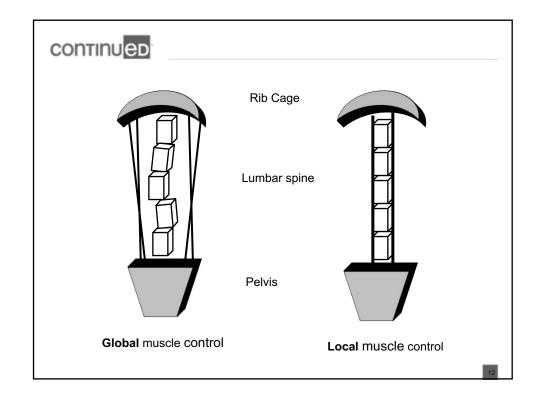
Muscle Control

Types of muscle

Related to their intended function

Timing of the muscles

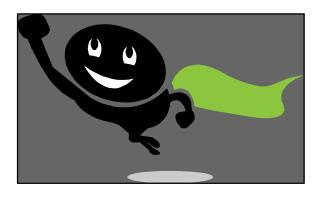
- Relates to neural control
- Pain leads to inhibition or spasm
- Often needs to be retrained starting with cognitive awareness progressing to automatic activation



Big stupid vs. small stabilizing muscles

- Global
 - "Big stupid muscles"
 - Direction dependent
 - Non-continuous
 - Provide motion

- Local
 - Tonic
 - Low load (25% of max)
 - Without increased shear and compressive forces generated
 - Little change in muscle length


Muscles

- Global
 - Obliques
 - Rectus abdominus
 - Erector spinae
 - Quadratus Lumborum
 - Hip flexors
 - Gluteals
 - Hamstrings

- Local Stabilizing
 - Transverse **Abdominus**
 - Multifidus
 - Pelvic floor
 - Diaphragm

continued

"Greatness lies not in being strong but in the right use of strength" Henry Ward Beecher (1813-1887)

Lumbar Stabilization

The ability to transfer loads and perform movements that are smooth and effortless.

Ability to disassociate movement of the extremities from the spine.

Requires muscle balance, strength, flexibility and motor control.

continued

Goals of Lumbar Stabilization

- Increase pt. Kinesthetic awareness
- Increase flexibility, strength, endurance and coordination
- Enhance function of extremities through strengthening of trunk musculature
- Facilitate function to control, prevent or eliminate symptoms
- Provide postural work to enhance balance and equilibrium
- Develop muscle synergy: internalized and automatic by patient
- Enhance patient compliance with good follow through by therapist

continued

Phases of Stabilization Exercise

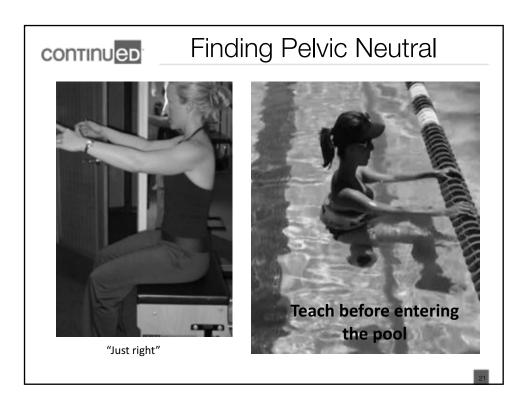
Phase 1 = localized stabilization training

Phase 2 = generalized trunk stabilization

Phase 3= functional stabilization training

Phase 1

- Patient education
- Finding pelvic neutral all positions
- ADIM various positions, quadruped 1st
- Multifidus isometrics
- Biofeedback


continued

How are you sitting?

- Are you stable?
- If I came behind you and pushed down on your shoulders would your low back give way?

Belly Pull Ins

Facilitating the Transverse Abdominus

Use the exhale

Very effective in the quadruped position
In the pool or if patient does not tolerate WB through wrists use wall push up position

Verbal Cues for ADIM (abdominal draw in maneuver)

- "Slowly and gently draw in your lower abdominals keeping your spine steady"
- "Hold the contraction while breathing normally"
- "It is important not to bend your spine while hollowing out your stomach"
- "should feel deep tension, not pushing out"
- "tighten abdominals without moving your back"

continued

Feedback with Aquatic Exercise

- Manual palpation
- Pool wall
- Cueing

Importance of the Multifidus

- Inhibition of muscle noted after 1st episode of LBP
- Recovery is not spontaneous
 - Specific ex. group v.s. general rehab
 - Sx. Resolved with both groups, however atrophy persisted in the general exercise group
 - 3yr f/u 75% recurrence rate with normal compared to 35% with stabilization group
 - Hides et al., 1996 & 2001

Multifidus Activation

continued

Trunk Muscle Activity during Pool Stabilization Ex. (Bressel et al. 2012)

Rectus

- Abdominal bracing and ball push downs (highest)
- Alternating arms sagittal plane (lowest)

Lower abdominals

- Abdominal bracing and ball push downs (highest)
- Alternating arms sagittal & mediolateral pelvic tilts (lowest)

External oblique

- Abdominal bracing and ball rotations (highest)
- Alternating arms sagittal (lowest)

Multifidus

- Hip abduction, and ball rotations (highest)
- Alternating arms and abdominal hollowing (least)

Erector spinae

- Ball lateral push downs and abdominal bracing (highest)
- Pelvic tilts and abdominal hollowing (lowest)

Clinical Pearls: Exercise Phase One

- Palpate multifidus watch for excessive paraspinal activity.
- Co-contraction with Transverse abdominus during ADIM

continued

Aquatic Exercise phase one: works "Balance" Learning to oh

Learning to obtain and maintain vertical and pelvic neutral without excessive compensatory movements with UE, head or feet.

Appropriate support, depth and use of equipment is essential for initial balance.

CONTINU ED

Coordination

Sequencing of local muscles prior to global movement

Breathing

Starts in phase one and continues to be challenged in phase two (stability with mobility)

Aspects of exercise affecting coordination

- Velocity
- Two or more movements in the same or different planes
- Upper and lower extremities moving together
- Moving distal to proximal
- Left/right alternating patterns
- Moving in different directions

continued

Phase 2

Basic

Straight plane movement Frequent cueing Stable postures

Advanced

Longer levers
Transitional movement patterns
Increase speed

Phase 2 continued

Progress to uneven surfaces

Caution, ensure local muscle activation is adequate

Aerobic exercise should be introduced at this time

Disassociation "Divorce one motion from another"

Supine & Prone

Clinical Pearl

Power of Feedback

ADIM effective in facilitating disassociating lumbar erector spinae from gluteus maximus and medial hamstring with prone hip extension exercise. Using both is recommended for preventing anterior tilts during prone hip extension.

(Oh et al. 2007)

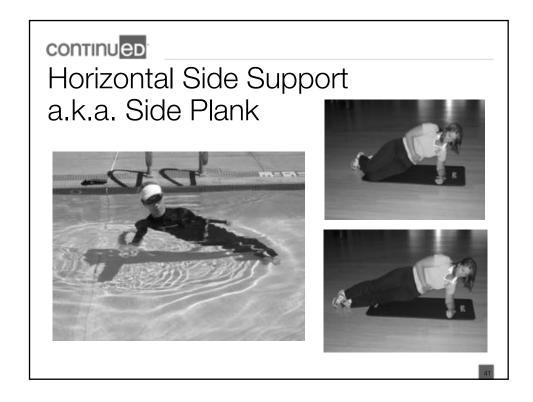
Phase 2= Generalized Trunk Stabilization

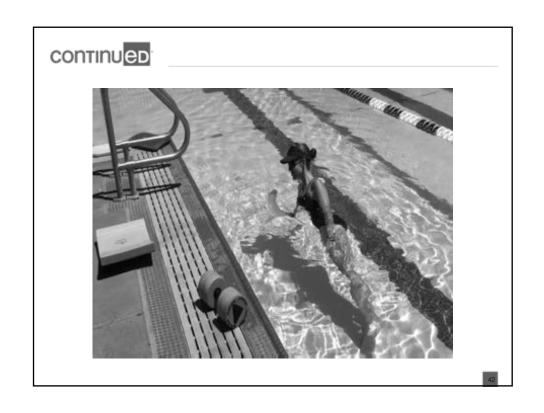
- Abdominal bracing sequence
- Multifidus/ spine extension progression
- Prone or QP with ADIM
 - Arm reach to lift
 - Leg lift
 - Arm and leg lift
 - Add resistance (weights or bands)
 - Use of pillow or bolster under hips
- QL/ side plank
- Hip strengthening with spine in neutral
- Bridging progression
- Flexibility

continued

Multifidus and EMG Activity

(Callaghan et al. 1998)


Multifidus muscle size and CLBP

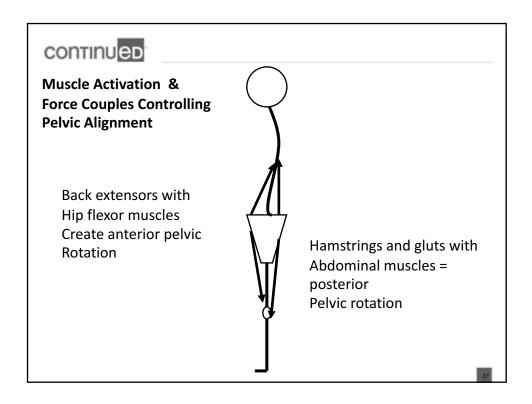

(Danneels et al. 2001)

Flexibility builds from.....

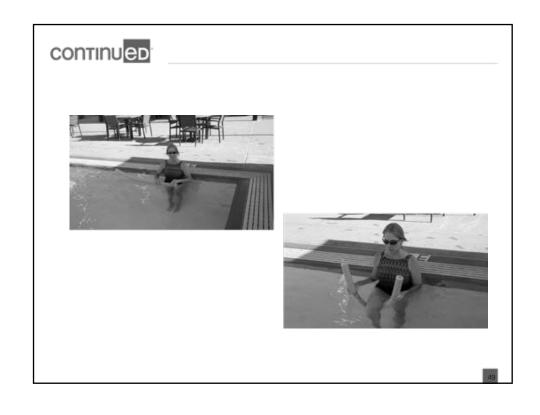

A stable base is essential for the muscle to allow full range of motion and elongation. If <u>balance</u> is altered the range is shortened for safety.

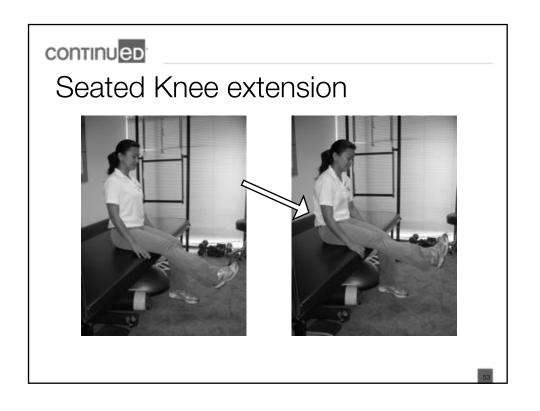
The ability for a muscle to relax and allow elongation is related to <u>coordination</u>

continued


Flexibility

Movement in a pain-free range

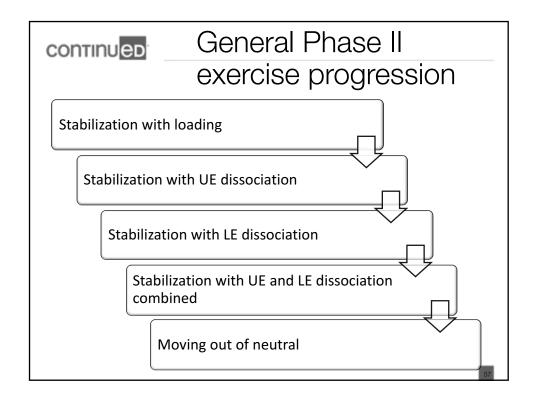

Balance/ pelvic neutral essential in the body's ability to move through full range.

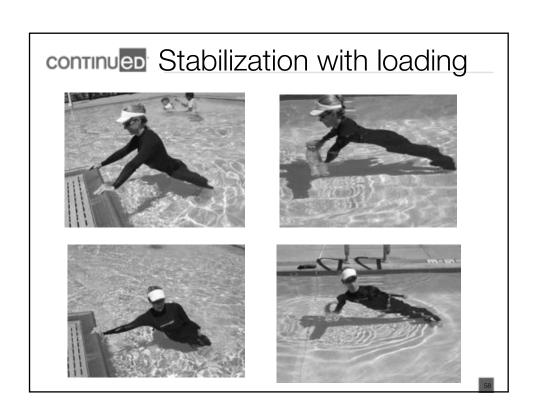


Endurance

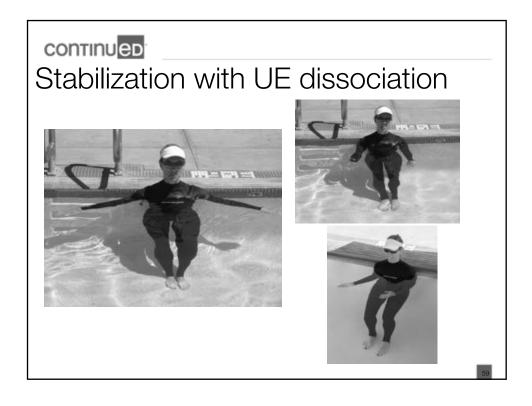
- Capacity of sustained effort over time
- Body and mind to function at peak efficiency for long periods
- Involves maintaining proper form which is a product of balance, coordination and flexibility

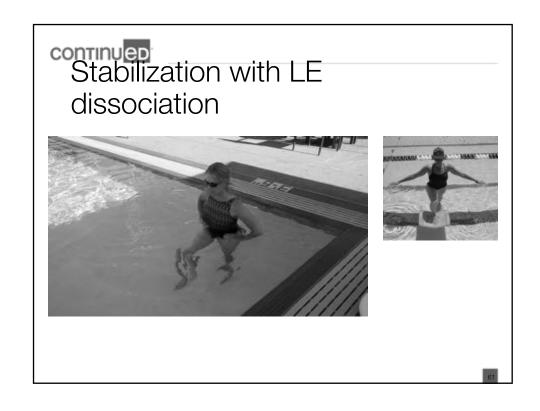
continued

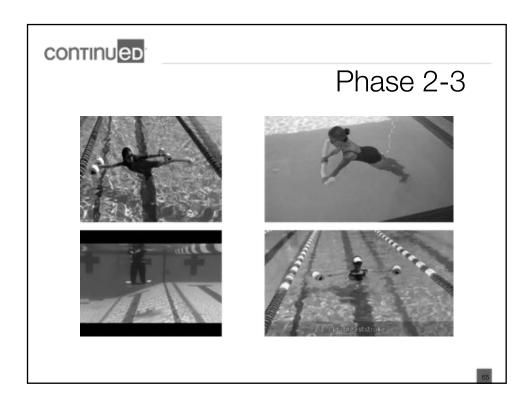

Endurance

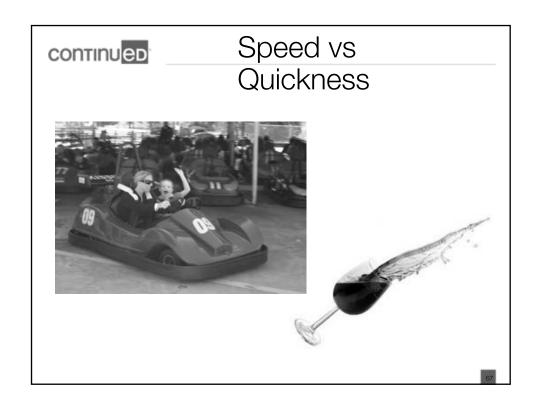


Maintaining alignment over prolonged period of time


Increasing cardiovascular challenges






Stabilization with UE and LE dissociation combined The dissociation combined to the dissociation combi

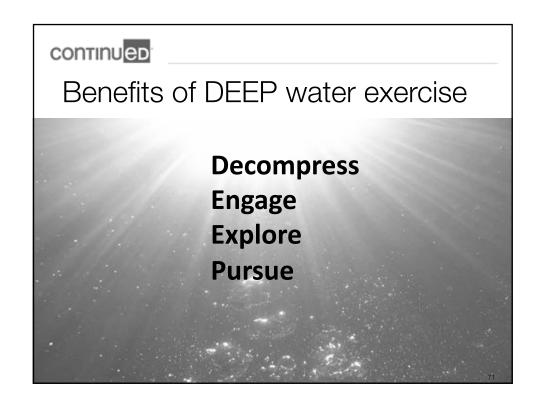
Functional Sports/ work specific Distracting exercises

Speed

Integrating local muscle control with increased activation of global muscle work.

Increases resistance and working towards strength.

CONTINUED D


Strength

Balance of strength Global and local

Agonist and antagonist

Shallow vs. Deep water running

Dowzer 1998

continued

Literature Review: Effectiveness of Aquatic Vertical Traction on Lower Back pain and Associated Sciatica. (Kaplan YK, Kaplan B (2016) *Journal of Aquatic Physical Therapy*. 24(1) pp.2-8)

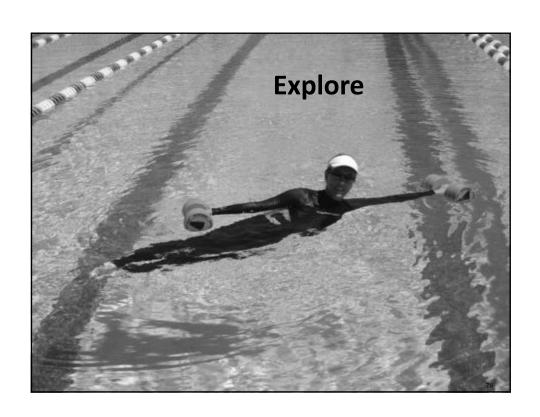
- Conclusion: although research is limited, based on current evidence, it is **potentially beneficial to reduce pain** in patients with LBP.
- Kurutz and Bender concluded that aquatic vertical traction is a typical viscoelastic process with instant elastic and 20-minute long creeping phases. They recommend 10 min initial session, increased to 20 min. (extending the treatment beyond 20 min was ineffective). Amount of elongation decreases with age.
- Use of armpit supports shifts the extension force to distal segments of the spine
- One investigation (Olah et al.) demonstrated significant reduction in pain measures but included exercise and iontophoresis in treatment with vertical tx.
- Consider the position of the applied weights (waist vs. ankle)
- Water temperature may play a role in that the one study that had 84 degree water temp failed to show any pain changes (one session 15 min., no weights used)

Aquatic Vertical Traction

- 5 pound ankle weights/ suspended by noodles under arms
- 15 minutes hang in deep water well
- Increased spinal height
- Reduced pain
- Centralization of symptomsSimmerman et al. 2011

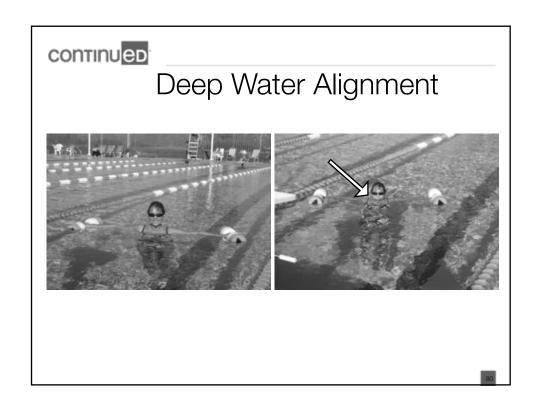
CONTINUED Vertical Position Stability

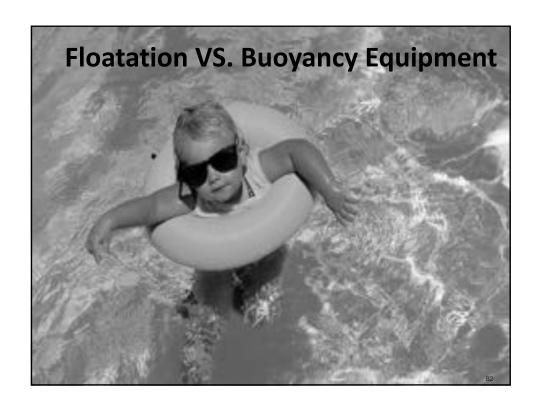
Stimulate function


Promote alignment and elongation of the spinal column

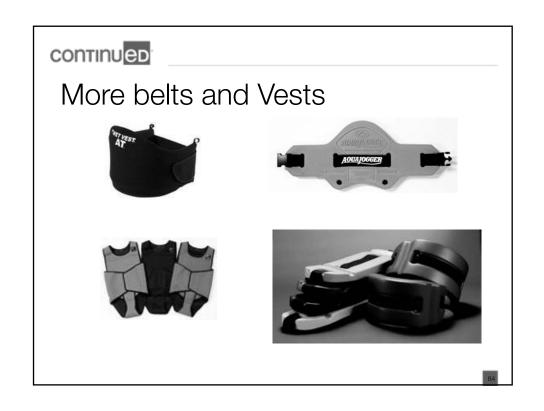
Individual must use their trunk muscles in order to control rotation.

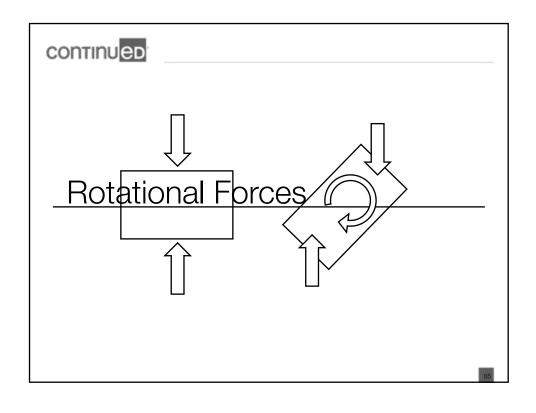
Easier to initiate movement

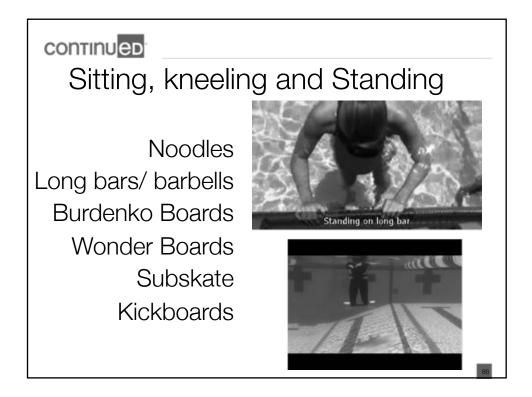


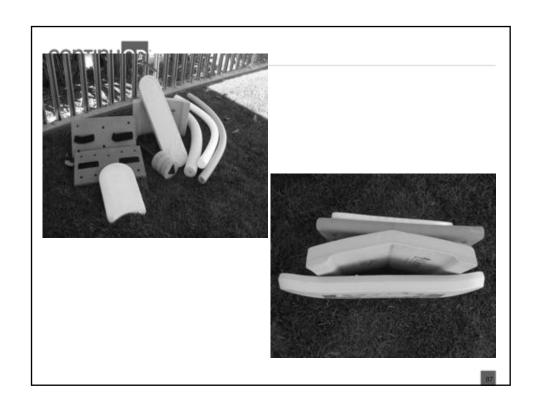


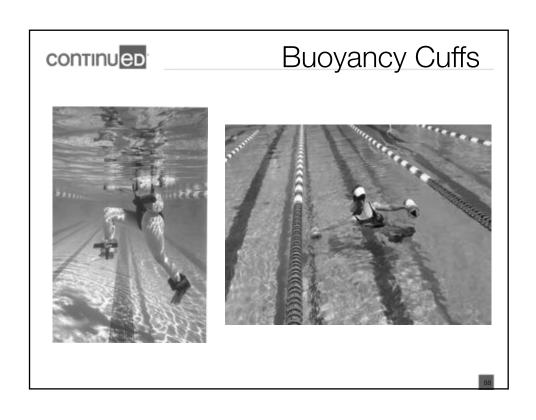
What happens when there is inadequate floatation?


- Tension
- Breath holding
- Treading water
- Interference with desired movement patterns









Prone and Supine Recovery: Use physics

Change surface area and relative density: Bring knees and arms in toward body

Change COB and relative density: Exhale to assist in return to vertical

continued

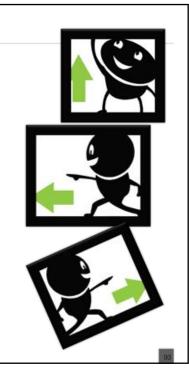
Watch the Head Position

Precautions to deep water

- Hydrophobia
- Instability, poor trunk control,
- Limited/ Absent proprioception
- Early post-op spinal fusion
- THA with hip precautions
- Multi-level fusion
- SI joint hypermobility
- ligamentous injuries

continued

Gaining Specificity and Functionality in your exercise program!


Multiple Directions

Stimulate the neuromuscular system by reversing normal movement patterns

Correct or prevent muscle imbalances

Patterns are easier within the field of vision.

Moving backwards or sideways the body shifts to an internal kinesthetic awareness

continued

Effects of Aquatic Backwards Locomotion

- N= 30 (age 38.9 +/- 4.77), males with Hx of at least 11 months LBP prior to surgery
- Rx 1= PRE with MedX machine
- Rx 2= aquatic backward walking and jogging
- Control = no intervention
- Aquatic backwards locomotion is as beneficial as land based PRE for improving extension strength in patients after lumbar discectomy
 - Kim et. al (2010)

Muscle Activation with Backward Walking

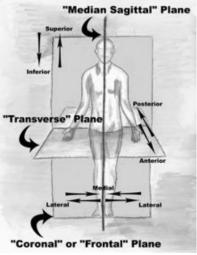
 Backward walking in water resulted in significantly higher muscle activity of the paraspinals (increased 61%), vastus medialis (increase 83%) and tibialis anterior (increase 47%) compared to walking forward in the water.

Musumoto & Mercer 2008

continued

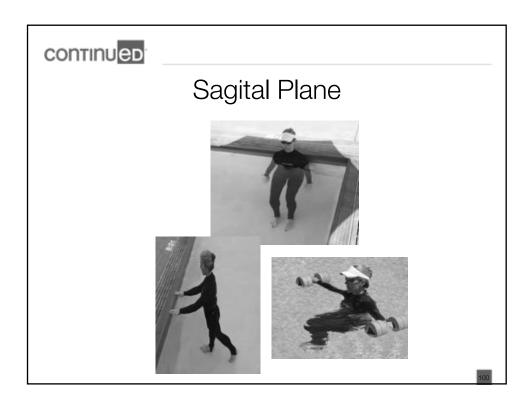
Vary the Speed

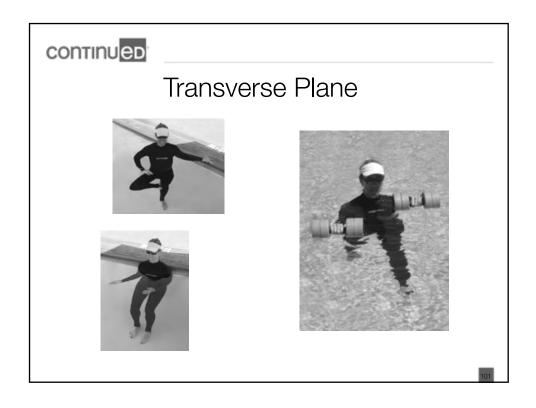
- SLOW
 - Learn and integrate the movement pattern
- MEDIUM
 - Develop flow
- FAST
 - Challenge systems

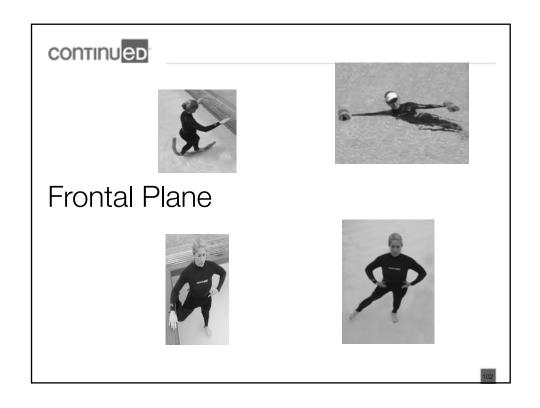

Water and Land

Daily lives involve functioning on land Land and water exercises are used to complement and build on each other

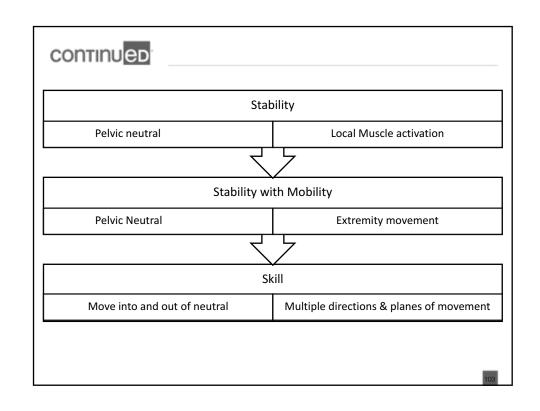
The same principles apply to land as they do in the water


Progression and Planes




Specificity in Exercise Prescription

- Direction and type of movement will determine plane of movement control challenged the most.
- Factors to consider with exercise
 - Unilateral vs. bilateral
 - Single plane vs. multiple plane
 - Types of resistance (buoyant vs. drag force)
 - Use and direction of manual perturbations or turbulence





Importance of Cueing

- Improve performance
- Increases the value of the training
- Type of feedback for neuromuscular re-education
- Main types
 - Visual
 - Tactile
 - Verbal

Aquatic Spinal Stabilization Exercise & Patients with Symptomatic Lumbar Spinal Stenosis

N=6, 55-70 dx. lumbar stenosis

Outcomes= Roland-Morris disability questionnaire, pain rating scale before and after treadmill ambulation (neurogenic claudication)

Aquatic exercise 3x/ week x 6 weeks

Average decrease was 5 points on disability scale and 1.8 on pain scale

Kuck, Hasson, Olson, 2005

continued

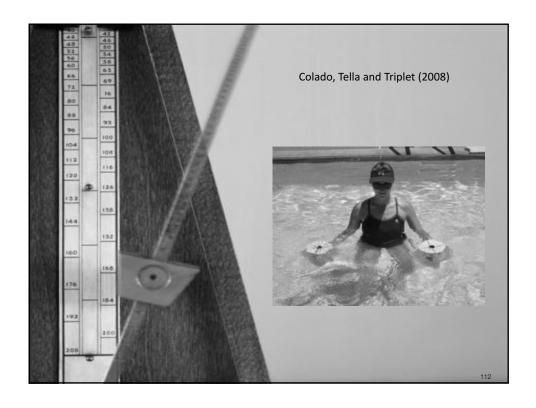
Aquatic Lumbar stabilization and strengthening exercise on CLBP

6 subjects

12 week aquatic exercise (shallow and deep)

Avg. pain ↓ 71.6%

Functional outcome scores scores changed from severe to moderate disability


Winter & McCaulley-Callagy, 2002

Aquatic Boot Camp for CLBP

- RTC, N=65 (age 20-50)
- Aquatic ex= 20 session, 5 times per week for 4 weeks, 60 minutes each
- Land ex= instruction verbal and written for HEP (no supervision just f/u phone call)
- Both groups had improvements in mobility (except for Schober test), pain disability and quality of life. However disability and quality of life measures were better in the aquatic group
- Dundar et al. Spine 2009

Effects of Aquatic therapy on functional Mobility and Strength, fall risk and self-reported disability in individuals with LBP

(Johnson SR, Keyan Z, Rosario ER. (2016) Journal of Aquatic Physical Therapy. 24(1) pp. 22-29)

- Aquatic-based therapy can be effective treatment for individuals with LBP to improve functional mobility and strength, decrease fall risk and improve individual's selfreported disability.
- The researches suggested based on this study that patient's who present with pain levels above 5/10 and ODI scores of 45 and above would be good canidates for aquatic therapy.
- Outcome measures looked at with a trend fro improvement with aquatic group but not control was pain level, ODI, FABQ, 5 meter walk, sit to stand test and TUG.

continued

Frequency matters (Ariyoshi et al. 1999)

Twice or more a week was required to benefit from an aquatic exercise program for low-back pain

Systematic Review (Waller, Lambeck, Daly 2009)

Therapeutic aquatic exercise appears to be an effective treatment intervention for chronic and pregnancy-related low back pain.

A comparison of water-based and landbased core stability exercises in patients with lumbar disc herniation: a pilot study. (Bayraktar 2015)

Authors concluded:

- An 8-week core stabilization program performed in water or on land decrease pain level and improve functional status in LDH patients.
- Both programs seem beneficial to increase healthrelated quality of life and static endurance of trunk muscles.
- Core stability exercises could be performed in water as well, no differences were found between methods due to environment.

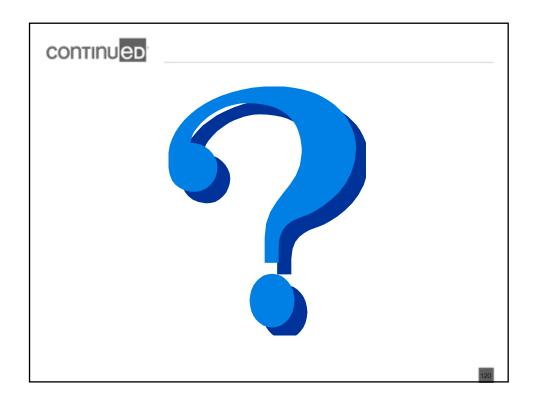
CONTINUED

The Effect of Water-Based Aerobic Training on the Dynamic Balance and Walking Speed of Obese Elderly Men with Low Back Pain (Irandoust,

Taheri, Shavikloo 2018)

- 36 elderly aged persons (62.3±2.6 kg; 163.1±2.1 cm)with low back pain, body fat percentage higher than 35%, waist-hip ratio of over 95% and visceral fat above 100 cm2. (1/2 control and ½ aquatic exercise)
- Experimental group had a significant decrease in the test time of 10 m walking speed (p = 0.001), time up and go test (p = 0.001), as well as in obesity variables (p = 0.001) and back pain (p = 0.001) after four months; however, no significant reduction was observed in any of the test times and variables of obesity and low back pain in the control group.

continued


A Pilot Study: Effects of Aquatic and Land Spinal Stabilization Training on the Management of Back Pain (Khair et al. 2014)

■ There was a significant difference in the pain level between post-land and post-aquatic spinal stabilization training (z = -2, p < 0.05). The findings of this study indicated that aquatic spinal stabilization training and land spinal stabilization training decreases pain level and improves functional status, deep abdominal muscle function, and center of vertical force. Both aquatic and land spinal stabilization training demonstrated positive results in pain level, functional status, deep abdominal muscle function, and center of vertical force.

Aquatic Exercises in the Treatment of Low Back Pain: A Systematic Review of the Literature and Meta-Analysis of Eight Studies (Zhongji et al. 2018)

Conclusions Aquatic exercise can statistically significantly reduce pain and increase physical function in patients with low back pain. Further high-quality investigations on a larger scale are required to confirm the results.

Thank You!

Beth Scalone, PT, DPT, OCS beth@waterpt.com

Instagram @ncwaterandsportstherapycenter

Facebook: NorthCountyWaterAndSportsTherapyCenter

