- If you are viewing this course as a recorded course after the live webinar, you can use the scroll bar at the bottom of the player window to pause and navigate the course.
- This handout is for reference only. It may not include content identical to the PowerPoint. Any links included in the handout are current at the time of the live webinar, but are subject to change and may not be current at a later date.

continued

© 2017 continu**ed**®No part of the materials available through the continued.com site may be copied, photocopied, reproduced, translated or reduced to any electronic medium or machine-readable form, in whole or in part, without prior written consent of continued.com, LLC. Any other reproduction in any form without such written permission is prohibited. All materials contained on this site are protected by United States copyright law and may not be reproduced, distributed, transmitted, displayed, published or broadcast without the prior written permission of continued.com, LLC. Users must not access or use for any commercial purposes any part of the site or any services or materials available through the site.

Glenohumeral Impingement Syndrome: Individualizing Treatment Approaches Based on Examination and Evidence

Michael T. Lebec, PT, Ph.D. Professor Northern Arizona University Flagstaff Mountain Campus

continued

Learning Objectives

The participant will be able to:

- Describe an overview and summary of shoulder impingement tests and measures described in the literature.
- Identify evidence which evaluates the accuracy of shoulder impingement tests and measures.
- List at least three key, impaired body structures which guide treatment plan design.
- Outline at least three evidence-supported interventions which are individualized to and effective for reducing the patients problems and deficits.

Course Outline

- Objectives
- Review of Impingement Anatomy
- Types / Stages of Impingement
- Tests and Measures Overview
- Evidence for Tests and Measures
- Key Impairments
- Interventions to Address Key Impairments
- Evidence for Management of Impingement
- Summary

Considering how you manage patients with suspected impingement syndrome

. . .

What are your preconceived notions?

Common findings from the patient history?

Key components of your physical exam?

Considerations for interpreting your exam findings?

continued

Question #1

Is it really impingement syndrome?

Common Differential Diagnoses?

Shoulder Impingement Anatomy

- What is impingement syndrome?
 - What does the impinging (imping-ers)?
 - Mechanical compromise between humeral head and coraco-acromial arch or glenoid labrum
 - "Pinching" of soft tissues in this area
- What structures can be impinged ("imping-ees")?
 - Supraspinatus tendon
 - 2. Infraspinatus tendon
 - 3. Biceps tendon
 - 4. Sub-acromial bursa
 - 5. More rarely
 - Teres minor & subscapularis

continued

Shoulder Impingement – Additional causes

- Acromioclavicular Morphology
 - Acromion Typing (see % chance of success with rehab)
 - Sub-acromial Spurring or Osteophyte Formation
- Acute Inflammatory Condition
 - Bursitis, RC tendonitis
- Degenerative tear of RC

Types of Impingement Test your prior knowledge

21 year old college volleyball player with complaints of pain in posterior shoulder when performing "volleyball spike". This individual presents more consistent with:

47 year old male has pain across anterior-lateral shoulder with overhead reaching and reaching behind his back. This individual presents more consistent with:

- A. Internal Impingement
- B. External Impingement
- A. Internal Impingement
- B. External Impingement

Internal vs. External Impingement

subacromical bursa acromion supraspinatus muscle scapula capsula

Internal Impingement Syndrome

- Mechanical compression of RC insertion point between humeral head and posterior-superior labrum
- Subjective: Pain posteriorly -Especially in ABD-ER position
- Other impingement tests may be (+)
- Common in overhead athletes
- (+) Internal rotation resisted strength test

Examination Considerations

Subjective Presentation

Tests and Measures Overview

continued

Shoulder Impingement (External) **Subjective Findings**

- Pain in lateral upper arm (deltoid insertion common) & anterior / proximal humerus
- Pain during ROM and movements
- Which planes / movements most symptomatic
 - 1. End & overhead ranges
 - 2. IR positions
 - 3. Which functional activities will mimic these?

Which of the following functional activities do you perceive as MOST commonly painful in Patients with

External Impingement Syndrome? (Select all that apply !!!)

- A. Cocking phase of throwing
- B. Reaching into back pocket
- c. Donning belt
- D. Donning bra
- E. Buttoning a shirt
- F. Pulling open a door
- G. Tucking in a shirt
- н. Lifting a heavy carton of milk

continued

Shoulder Impingement (External)

Common Objective Findings

Stage 1

- Tender to palpation @ involved tendon insertion
- Painful arc
- RC &/or Scapular weakness
- (+) Special tests
- Other impaired body structures based on primary vs. secondary

Stage 2

- Crepitus & catching
- Limited range of motion into lower ranges

Stage 3

- Atrophy of supra/infra spinatus
- More limited ROM & weakness

Common Tests for Patients with Suspected Impingement

Symptom Provocation Tests

- Neer's
- Kennedy-Hawkins
- Painful Arc Assessment
- Yocums' Test
- Internal Rotation Resisted Strength Test

continued

Common Tests for Patients with Suspected Impingement

Symptom Relief Tests

Impingement Relief Test Scapular Assistance Test Scapular Retraction / Reposition Test

Tests for RC Pathology

- •Infraspinatus Test
- •Empty Can Test

How familiar are you with these tests?

How useful/accurate do you feel these tests are?

Other thoughts on use of these tests?

continued

Sensitivity / Specificity / Likelihood Ratios

- Tests with high sensitivity effective for "ruling out" diagnosis
- Tests with high specificity effective for "ruling in" diagnosis
- Sensitivity / Specificity Range: 0 1.0

DIAGNOSTIC

Positive Likelihood Ratio	Negative Likelihood Ratio	Interpretation Ratio Generate large and often conclusive shifts in probability	
Greater than 10	Less than 0.1		
5–10	0.1-0.2	Generate moderate shifts in probability	
2–5	0.2-0.5	Generate small but sometimes important shifts in probability	
1–2	0.5–1	Alter probability to a small and rarely important degree	

Table 1-5: Interpretation of Likelihood Ratios²⁸

Published Accuracy of Impingement Tests

Test	Sensitivity	Specificity	(+) Likelihood Ratio	(-) Likelihood Ratio	
Neer's	0.72	0.60	1.79	0.47	
Hawkins-Kennedy	0.80	0.56	1.84	0.35	
Painful Arc	0.53	0.76	2.25	062	
Yocum's	0-70 - 0.79	0.40 - 0.92	1.32 - 8.80	0.33 – 0. 53	
IRRST	0.88	0.96	8.2	0.13	
Impingement Relief	?	?	?	?	
Scapular Assistance	Established to increase sub-acromial space; Acceptable reliability				
Scapular Repositioning	Provided ↓ in pain and/or ↑ strength in high % of patients with (+) impingement signs				
Infraspinatus Test	0.56	0.87	4.39	0.50	
Empty Can Test	0.50	0.87	3.9	0.57	

continued

Practical Considerations for Performing these Tests

Stages of impingement

I – Bursitis / Tendonitis (Reactive tissue)

II - Partial RCT and/or tissue fibrosis

III - Full Thickness RCT

Which can tests can present the most logistic difficulties

During later stages of impingement?

With patients with higher levels of severity & irritability?

- A. Neer's Test
- B. Painful Arc
- C. Symptom relief tests
- D. Hawkins-Kennedy
- E. Infraspinatus Test

Test Clustering

Michener et al., 2009

 3/5 of the following tests positive increases diagnostic accuracy for identifying impingement sn = 0.75

■ Painful Arc Sp = 0.74 + LR = 2.93

■ Empty Can - LR = 0.34

Infraspinatus (resisted ER)

Neer's

Hawkins-Kennedy

Best cluster of 3?

- Painful arc Sign
- Empty can
- Infraspinatus

Park et al., 2005

- Combination of 3 positive tests significantly increases diagnostic accuracy
 - (+ LR 10.6)
 - Hawkins-Kennedy
 - Painful Arc Sign
 - Infraspinatus

continued

Question #2

What might be causing the impingement?

Identification of Key Impaired Body Structures and Limitations

What might be causing the impingement?

- Why is this important?
- How do we determine this?
- What exam findings are helpful for this purpose?

continued

When providing treatment for a patient with impingement syndrome, how often do you think in terms of ...

Primary vs. Secondary Impingement

- A. Very often
- B. Sometimes
- c. Rarely

Internal vs. External Impingement

- A. Very often
- B. Sometimes
- c. Rarely

Most of my patients with impingement syndrome tend to present with:

- A. Primary External Impingement
- B. Secondary External Impingement
- C. Internal Impingement
- D. Not sure

Intervention for Shoulder Impingement

How commonly do you include each of these approaches in your treatment of impingement syndrome?

- Rotator cuff strengthening
- Joint Mobilization
- Muscle Stretching
- Scapular Stabilization

- A. All patients
- B. Most patients
- c. Some patients
- D. Few patients

continued

Primary impingement

- Degenerative structural changes to acromion/coracoid
- 2. Capsular tightness
- 3. Faulty posture / position
- 4. Weakness of RC musculature ***

Secondary Impingement

- Change in F couple / muscle dynamics at GH it ***
- Abnormal movement patterns of GH / Scapulothoracic it
- Instability of scapula or GH it

Abnormal mechanical and/or structural relationship between the rotator cuff and the coracoacromial arch

Narrowing of the subacromial space due to glenohumeral or scapulothoracic joint instability

Obligate Translation

- Tightness of posterior capsule changes humeral mechanics
- If cannot migrate posteriorly where will it go?
- Treatment?
 - Joint mobilization

continued

Possible Associated Exam Findings

Primary impingement

- 1. Abnormal posture
- ↓ed capsular mobility
- 3. RC "weakness"
- 4. Radiographic findings
 - 1. Abnormal acromion type
 - 2. Osteophytes
 - 3. Sub-coracoacromal thickening

Secondary Impingement

- 1. GH/ST joint hypermobility
 - General hypermobility of GH jt with mobility testing
 - Sulcus sign
 - A/P translation or drawer tests
 - Subluxation relocation tests
- 2. Scapular dyskinesis
- 3. (+) Beighton index
- 4. (+) subluxation / relocation test
- 5. RC "dysfunction"

Subluxation Relocation Test / Jobe's Relocation Sign

- Sn=65%; Spec=90%
- Apprehension test position
 - 90 deg ABD, full possible ER
- Pain here goes away with posterior pressure

continued

Other Exam Considerations ...

- Range of Motion
 - GH Internal Rotational Deficiency (GIRD)
 - Excess ER ROM
 - Decreased IR ROM
 - Be sure to stabilize scapula when measuring
 - Total arc of motion = 160 degrees then NOT GIRD !!!
- Assessment of scapular mechanics
 - At rest and during upper extremity movements
 - Especially assess timing / recruitment of serratus, lower/middle traps, upper traps
 - Scapular assistance test
 - Retraction / Reposition test

Scapular Dyskinesis / Mechanics Assessment

- Scapular assistance test
- Scapular retraction / reposition test
- Kibler Qualitative Assessment of Scapular Mechanics
 - a) Type I ↑ed anterior tilt (prominent inferior angle)
 - b) Type II ↑ed Internal Rotation (prominent medial border)
 - c) Type III 1ed elevation of superior border

continued

Internal Impingement Syndrome Key Clinical Exam Findings

- Loss of GH Internal Rotation
- Excess External Rotation
- Weakness of Rotator Cuff, Scapular Retractors & Upward Rotators
- (+) Impingement Tests
- (+) Internal rotation resisted strength test

Intervention Plans for Impingement Syndrome

Individualizing your approach based on Exam Findings

continued

Saul is a 70 year old male with complaints of left shoulder pain with overhead arm movements. During your interview, you notice he has a slumped posture and limited neck and trunk motion. He reports that motion in his shoulder is quite "stiff" during all function. Based on this presentation, Saul is MOST likely to present with:

- A. Primary External Impingement
- B. Secondary External Impingement
- c. Internal Impingement

If your hypothesis holds true, the focus of your treatment will be MOST likely to include interventions which:

- A. Reduce the presence of his likely shoulder instability
- B. Recruiting muscles to contract at the proper time during shoulder elevation
- c. Increase mobility of the glenohumeral capsule and scapula
- D. Provide external support of the shoulder such as McConnell taping

continued

General Implications for Treatment

- Postural training /education
- Capsular mobilization
- Stretching into IR
- Training of RC musculature
 - Strength
 - Recruitment
- Training of scapular stabilizers
 - Strength
 - Recruitment
 - Balance
- Stretching of shortened soft tissue structures

Intervention for Shoulder Impingement

- Avoid impingement positions / tasks
- Recruit / Strengthen RC mm (especially IR/ERs)
- Recruit / Strengthen Scapular Stabilizers
- Promote proper recruitment of these during function (PNF)
- Core Stability
- Flexibility of pec minor
- Mobility of shoulder capsule especially posterior
 - Obligate Translation !!!

continued

Sleeper Stretch (Posterior Capsule)

Recruitment of Specific Shoulder Girdle Musculature

Which exercises are most effective?

continued

Townsend, Jobe, et al. (1991) Summary of Findings

- Most EMG activity:
 - Supraspinatus
 - Military Press, Empty Can***
 - Infraspinatus
 - Horizontal ABD w/ER, Sidelying ER
 - Teres Minor
 - Side-lying ER, Horizontal ABD w/ER
 - Subscapularis
 - Empty can***, Military press

CONTINU ED

Local Shoulder Exercises

Reinold JOSPT 2009

Muscle	Exercise	Anatomical Implications	Biomechanical Implications	Clinical Implications
Supraspinatus	1. Full can	Enhances scapular position and subacromial space	Decreased deltoid involvement compared to empty can	Minimizes chance of superior humeral head migration by deltoid overpowering supraspinatus
	2. Prone full can	Enhances scapular position and subacromial space	High posterior deltoid activity with similar supraspinatus activity	High supraspinatus activity and also good exercise for lower trapezius
Infraspinatus and teres minor	1. Side-lying ER	Position of shoulder stability, minimal capsular strain	Increased moment arm of musde at 0° abduction. Greatest EMG activity	Most effective exercise in recruiting infraspinatus activity. Good when cautious with static stability
	 Prone ER at 90° abduction 	Challenging position for stability, higher capsular strain	2. High EMG activity	Strengthens in a challenging position for shoulder stability. Also good exercise for lower trapezius
	3. ER with towel roll	Allows for proper form without compensation	Increased EMG activity with addition of towel, also incorpo- rates adductors	3. Enhances muscle recruitment and synergy with adductors
Subscapularis	1. IR at 0° abduction	1 Position of shoulder stability	Similar subscapularis activity between 0° and 90° abduction	Effective exercise, good when cautious with static stability
	2. IR at 90° abduction	2. Position of shoulder instability	Enhances scapular position and subacromial space. Less pectoralis activity	2. Strengthens in a challenging position for shoulder stability
	3. IR diagonal exercise	3. Replicates more functional activity	3. High EMG activity	3. Effective strengthening in a functional movement pattern

EMG Analysis of Scapular Muscles During a

Shoulder Rehabilitation Program

Mosely, Jobe, et al. (1992)

(Combined % Max Voluntary Contaction & Duration of Exercise Active)

Upper Trap	Middle Trap
Rowing	Horiz ABD (neutral)
	Horiz ABD (ER)
Rhomboids	Levator Scap
Horiz ABD (neutral)	Rowing
<u>Serratus</u>	
Push up plus	

Is Conservative Management of Impingement Syndrome Effective?

Exercises versus arthroscopic decompression in patients with subacromial impingement: a randomised, controlled study in 90 cases with a one year follow up

J P Haahr, S Østergaard, J Dalsgaard, K Norup, P Frost, S Lausen, E A Holm, J H Andersen

Ann Rheum Dis 2005;64:760-764. doi: 10.1136/ard.2004.021188

Objectives: To compare the effect of graded physiotherapeutic training of the rotator cuff versus arthroscopic subacromial decompression in patients with subacromial impingement.

Methods: Randomised controlled trial with 12 months' follow up in a hospital setting. Ninety consecutive

Methods: Randomised controlled trial with 12 months' tollow up in a hospital setting. Ninety consecutive patients aged 18 to 55 years were enrolled. Symptom duration was between six months and three years. All fulfilled a set of diagnostic criteria for rotator cuff disease, including a positive impingement sign. Patients were randomised either to arthroscopic subacromial decompression, or to physiotherappy with exercises aiming at strengthening the stabilisers and decompressors of the shoulder. Outcome was shoulder function as measured by the Constant score and a pain and dysfunction score. "Intention to treat" analysis was used, with comparison of means and control of confounding variables by general

equation estimation analysis.

Results: Of 90 patients enrolled, 84 completed follow up (41 in the surgery group, 43 in the training group). The mean Constant score at baseline was 34.8 in the training group and 33.7 in the surgery group. After 12 months the mean scores improved to 57.0 and 52.7, respectively, the difference being non-significant. No group differences in mean pain and dysfunction score improvement were found.

Conclusions: Surgical treatment of rotator cuff syndrome with subacromial impingement was not superior to physiotherapy with training. Further studies are needed to qualify treatment choice decisions, and it is recommended that samples are stratified according to disability level.

See end of article for authors' affiliations

Correspondence to: Dr Jens Peder Haahr, Department of Occupational Medicine, Herning Hospital, DK-7400 Herning, Denmark; heciph@ringamt.dk

Accepted 18 September 2004

Take Home Messages?

- Determine if impingement is truly the issue
 - When interpreting exam findings:
 - Understand accuracy of individual tests
 - Cluster findings from multiple tests
- If present, determine cause of impingement
 - Internal vs. External
 - Aspects of Primary Impingement vs. Secondary Impingement
- Design treatment program accordingly using most effective exercises

continued

References

- Conroy, D.E, & Hayes, K.W., (1998) The Effect of Joint Mobilization as a Component of Comprehensive Treatment for Primary Should Impingement Syndrome, JOSPT, 28(1).
- Corso, G., (1995) Impingement Relief Test: An Adjunctive Procedure to Traditional Assessment of Shoulder Impingement Syndrome, JOSPT, 22(5).
- 3. Ellenbecker, T.S., & Cools, A., (2010) British Journal of Sports Medicine, 44.
- 4. Haahr, et al., (2005), Exercises vs. Arthroscopic Decompression in Patients with Sub-acromial impingement. Ann Rheum Dis. 64.
- Hegedus, E.J., (2012) Which Physical Examination Tests Provide Clinicians with the Most Value When Examining the Shoulder? Update of a Systematic Review with Meta-Analysis of Individual Tests, British Journal of Sports Medicine, 46.
- Kamkar, A., Irrgang, J.J., & Whitney, S.L., (1993) Non-Operative Management of Secondary Shoulder Impingement Syndrome, JOSPT, 17(5).
- 7. Kibler, W.B., et al, (2002) Qualitative Clinical Examination of Scapular Dysfunction: A Reliability Study, Journal of Shoulder and Elbow Surgery, 11(6).
- Michener, L.A., et al., (2009) Reliability and Diagnostic Accuracy of 5 Physical Examination Tests and Combination of Tests for Subacromial Impingement, Arch Phys Med Rehabil, 90.

References

- Mosely, Jobe, et al. (1992), EMG Analysis of the Scapular Muscles during a Shoulder Rehabilitation Program. AM J Sports Med, 20(2).
- Park, B.P., et al., (2005) Diagnostic Accuracy of Clinical Tests for the Different Degrees of Subacromial Impingement Syndrome, Journal of Bone and Joint Surgery, 87A(7).
- 11. Reinold, MM, et al., (2009), Current concepts in the scientific and clinical rationale behind exercises for glenohumeral and scapulothoracic musculature, JOSPT, 39(2).
- Seitz, A.L., et al., (2012) Effects of Scapular Dyskinesis and Scapular Assistance Test on Subacromial Space During Static Arm Elevation, Journal of Shoulder and Elbow Surgery, 21.
- 13. Tate, A. R, (2008) Effect of the Scapula Reposition Test on Shoulder Impingement Symptoms and Elevation Strength in Overhead Athletes, JOSPT, 38(1).
- 14. Townsend, Jobe, et al., (1991), EMG Analysis of the Glenohumeral Muscles During a Baseball Rehabilitation Program, Am J Sports Med, 19(3).
- 15. Zaslav, K., R., (2001) Internal Rotation Resistance Strength Test: A New Diagnositc Test to Differentiate Intra-Articular Pathology from Outlet (Neer) Impingement Syndrome in the Shoulder, Journal of Shoulder and Elbow Surgery, 10(1).

continued

Questions?

