If you are viewing this course as a recorded course after the live webinar, you can use the scroll bar at the bottom of the player window to pause and navigate the course.

This handout is for reference only. It may not include content identical to the powerpoint. Any links included in the handout are current at the time of the live webinar, but are subject to change and may not be current at a later date.
Wrist Detective: Investigating the Traumatic Wrist Injuries

Rachel Pigott MPH, OTR/L, CHT, CLT-LANA

Objectives

• Identify methods for diagnosing distal radius (DR) fractures, factors that influence rehabilitation and outcomes in DR fractures, and an appropriate plan of care for DR fractures.
• Identify methods for diagnosing scapholunate (S-L) injuries, factors that influence rehabilitation and outcomes, and an appropriate plan of care for S-L injuries.
• Identify methods for diagnosing scaphoid fractures, factors that influence rehabilitation and outcomes, and an appropriate plan of care for scaphoid fractures.
Mapping it Out

• Investigating FOOSH Injuries
 o Epidemiology
 o Speed and Force
• Distal Radius Fractures
• S-L Injuries
• Scaphoid Fractures

Investigating FOOSH Injuries

 Epidemiology
 Force and Speed
Who Cares??

Collaborative Care............... Improved Outcomes.......

Where are you getting your Information?

Not Always Possible In a Perfect World
Epidemiology

• The usual suspects…… Distal Radius
 o Pediatric and Elderly (Our Focus Today)
 o 18% of all Fractures in Elderly (65 yo +)
 o Rising prevalence
 o Cognitively intact
 o Women > Men

Epidemiology

• The usual suspects ……. S-L ligament injuries
 o Middle Aged
 o Lack of large Epidemiological Studies, mainly case series, small cohort studies
 o WHY????????
 o Coding
 o What is published???
Epidemiology

- The usual suspects S-L ligament injuries
 - Associated Injuries
 - DR FX
 - With high energy injury DR FX
 - Small N – 14 of 15
 - Surgery beneficial grade 3-4 tears
 - Age matches SL injury

Epidemiology

- 563.32 Traumatic rupture of scaphocapitate ligament
 - 563.321, Traumatic rupture of right scaphocapitate ligament
 - 563.321A, Initial encounter
 - 563.321B, Subsequent encounter
 - 563.325, Sequelae
 - 563.32 Traumatic rupture of left scaphocapitate ligament
 - 563.321, Initial encounter
 - 563.322, Subsequent encounter
 - 563.32 Traumatic rupture of unspecified scaphocapitate ligament
 - 563.329, Initial encounter
 - 563.329, Sequelae

- 563.2 Traumatic rupture of radiocapitate ligament
 - 563.1, Initial encounter
 - 563.2, Subsequent encounter
 - 563.29, Sequelae

- 563.121, Traumatic rupture of left radioscaphoid ligament
 - 563.121A, Initial encounter
 - 563.121B, Subsequent encounter
 - 563.125, Sequelae

- 563.12 Traumatic rupture of right radioscaphoid ligament
 - 563.121, Initial encounter
 - 563.122, Subsequent encounter
 - 563.125, Sequelae

- 563.12 Traumatic rupture of unspecified radioscaphoid ligament
 - 563.129, Initial encounter
 - 563.129, Sequelae

- 563.32 Traumatic rupture of scapholunate ligament
 - 563.321, Initial encounter
 - 563.322, Subsequent encounter
 - 563.325, Sequelae

- 563.32 Traumatic rupture of left scapholunate ligament
 - 563.321, Initial encounter
 - 563.322, Subsequent encounter
 - 563.325, Sequelae

- 563.32 Traumatic rupture of right scapholunate ligament
 - 563.321, Initial encounter
 - 563.322, Subsequent encounter
 - 563.325, Sequelae

- 563.32 Traumatic rupture of unspecified scapholunate ligament
 - 563.329, Initial encounter
 - 563.329, Sequelae

- 563.2 Traumatic rupture of radiolunate ligament
 - 563.1, Initial encounter
 - 563.2, Subsequent encounter
 - 563.29, Sequelae

- 563.2 Traumatic rupture of left radiolunate ligament
 - 563.1A, Initial encounter
 - 563.2A, Subsequent encounter
 - 563.29A, Sequelae

- 563.2 Traumatic rupture of right radiolunate ligament
 - 563.1B, Initial encounter
 - 563.2B, Subsequent encounter
 - 563.29B, Sequelae

- 563.2 Traumatic rupture of unspecified radiolunate ligament
 - 563.19, Initial encounter
 - 563.29, Sequelae

- 563.2 Traumatic rupture of scaphocapitate ligament
 - 563.1A, Initial encounter
 - 563.2A, Subsequent encounter
 - 563.29A, Sequelae

- 563.2 Traumatic rupture of left scaphocapitate ligament
 - 563.1B, Initial encounter
 - 563.2B, Subsequent encounter
 - 563.29B, Sequelae

- 563.2 Traumatic rupture of right scaphocapitate ligament
 - 563.19, Initial encounter
 - 563.29, Sequelae

- 563.2 Traumatic rupture of unspecified scaphocapitate ligament
 - 563.29, Sequelae
Epidemiology

- The usual suspects …… S-L ligament injuries
 - Age matches SL injury
 - Scaphoid FX …… controversy

 - N = 18
 - No SL injuries

 - N=41
 - 10 of 41 found SL

Scaphoid Fractures

- Young Males highest incidence
- Mean Age = 22
- Greater incidence lower Socio Economic Status (SES)
- UK
- N=415

Speed and Force

HIGH Force and Velocity

LOW Force and Velocity
Speed and Force

- Resisting Deforming Forces
- Bone Density

Distal Radius Fractures
DR FX
Force Transmission

- As force travels through wrist from:
 - 3rd MC
 - To CSL joint primarily at MC joint
 - To Radiocarpal joint:
 - RS 50-56%
 - RL 29-35%
 - UL 10-21%

80% of Force Transmission

Anatomy of the Distal Radius

- Radial Inclination
- Radial Height
- Palmar Tilt
Diagnosis of DR FX

- Visible Deformity
- Radiograph

What Makes it Worse?

- Loss of Radial Height
- Loss of Palmar Tilt/
 Dorsal Angulation
- Loss of Radial Inclination
What Makes it Worse?

- Intra Articular
- Fracture between or through scaphoid and lunate facets
- Severe Comminution

Sources of Information

- Collaborative Care
 - Physician Script/Referral
 - Radiograph
 - Radiography Report
 - OR Note
 - Physician Note
 - Therapist – Physician Communication
DR FX – Treatment Options

- Closed Reduction and Casting/Orthosis
- External Fixation
- Open Reduction Internal Fixation (ORIF)
 - Volar Plating

DR FX ORIF – Volar Plating

- Increased rate of Volar Plating
Post Op Rehab DR FX ORIF

- Orthosis of choice = Wrist
- Progression of Exercise Intensity
 - AROM - 1-2 weeks
 - No Optimal Start Time Established
 - PROM POW 4
 - Orthosis Weaning POW 6
 - Strength POW 6-8

Post Op Rehab DR FX ORIF

- What Else?
 - Edema Management
 - Scar Management
 - Pain Management
Post Op Rehab DR FX ORIF

• Things to look out for
 o Infamous scarring FPL

Post Op Rehab DR FX ORIF

• Things to look out for
 o Wrist Extension who is the driver
Post Op Rehab DR FX ORIF

- Things to look out for
 - Crepitus
 - Ulnar Sided Wrist Pain
 - Sympathetic Nervous System Symptoms
 - Carpal Tunnel

An ounce of Prevention is Worth a Pound of cure

- Things to look out for
 - Frozen Shoulder
 - Finger Stiffness - PCS

DR FX Outcomes

Severe pain with function first two months → Resolution of pain and dysfunction 6 months → One Year Still symptoms for some

Scapholunate Ligament Injuries (S-L)
Proximal Carpal Row Biomechanics - Quick

- Distal Carpal Row
 - Acts as one unit

- Proximal Carpal Row
 - More motion between these bones
 - Scaphoid potential energy flexion
 - Triquetrum = extension
 - SL-LT ligs create balance between these forces

Carpal Ligaments Intrinsic

Dorsal

Volar
S-L Injury

- Lunate goes with carpal bone that is still connected with
 - Scaphoid flexes
 - Triquetrum extends

- S-L disruption, lunate goes with triquetrum = extension of lunate = DISI
Diagnosing the S-L Injury

- Radiography – can be static film or loaded
 - S-L interval 3-5mm or greater
 - Terry Thomas Sign
 - Cortical Ring Sign
 - S-L angle greater than 60
Dorsal
Volar

SL Injury Additional Testing

- MRI
 - Partial or Complete? Where is tear?
- Arthroscopy
 - Drive Thru Sign
SL Injury Special Testing
Watson Scaphoid Shift

UD and slight extension to.... RD and slight flexion

What Makes it Worse

• Timing is everything
 o Acute < 3 weeks
 • Healing potential
 o Sub acute 3-6 weeks
 o Chronic > 6 weeks
 • Reducible?
 • Arthritic changes?

• Type of Instability
 o Pre Dynamic
 o Dynamic
 o Static
Treatment of SL Tears Conservative

- Grade I and II
- Hold until stiff, stable – immobilize 3-12 weeks
 - Thumb Spica Orthosis
- Then immobilize intermittently (between exercises)

Thoughts on Wrist Rehabilitation

- Let's not just think of the wrist as motion and strength
- What do we need from our wrist?
 - Be able to accept and transfer force
 - Functional range
 - Protective reflexes
Thoughts on Rehabilitation

- Let's get more sophisticated
 - Is there an arc of motion that limits stress to the injured structure?
 - Is there a muscle contraction that has been shown to improve stability for injured structure?
 - How can we work on improving proprioception lost during immobilization?

Dart Thrower’s Motion

- Ulnar Deviation and Wrist Flexion
- Radial Deviation and Wrist Extension
Role of DTM

• Dart Throwing Motion (DTM)
 o Most functional tasks are performed in this plane of motion
 o With this motion more action is at midcarpal joint thus limiting stress to radiocarpal joint
 o Less motion of Scaphoid and Lunate
 o What next.... Implications for early motion protocols for fractures, SL injuries, and ligament repairs
 • Whoa wait still need to clarify things

• Widening of SL interval has been shown in 4D computed tomography study with DTM

• There is further research needed perhaps there is a limited DTM range safe in the repaired SL

Muscles as Stabilizers

• Muscle Loading and Carpal Alignment
 o Contraction of certain muscles may improve carpal alignment
 • SL friendly = FCR, FCU, APL, ECRL; cause scaphoid supination and decreased stress to SL

<table>
<thead>
<tr>
<th>Muscles</th>
<th>Supinator</th>
<th>Pronator</th>
<th>SL</th>
<th>LT</th>
<th>MCI</th>
</tr>
</thead>
<tbody>
<tr>
<td>FCR</td>
<td>X – but only for Scaphoid with partial SL injury</td>
<td>X</td>
<td>sometimes</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>ERCL</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>APL</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECU</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>FCU</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Treatment of S-L Tears

Conservative

• After immobilization period initiate gentle AROM
 o What arc of motion would be beneficial to start with?
• When to start PROM? Be judicious remember our goal is stability over mobility
• Strength
 o Isometrics DTM
 • FCR if incomplete SL – Why?
 o Be cautious with power grip strength – Why?

Surgical Treatment of SL Tear

• SL Repair
• Reconstruction with Tendon Graft
• Dorsal Capsulodesis
• Tendon Weaves
• Reduction Association of Scaphoid and Lunate
Therapy Post S-L Repair or Reconstruction

• Knowledge is Power – find out what type of surgery was performed --- this may change your treatment
• Thumb spica cast or orthosis for 8 weeks
 o What happens to our proprioceptive reflexes during this time?
• Education – expected outcomes, might not have full motion that is OK
 o Goal = stability over mobility

Therapy Post S-L Repair or Reconstruction

• Early Mobilization Phase
 o Gentle AROM, emphasize DTM first
 o Proprioceptive training
 • DTM AROM
 • Joint Position Sense
 • Mirror box/Visual influence
 o Scar management
Therapy Post S-L Repair or Reconstruction

- PROM
 - Starts a couple weeks after AROM
 - Be judicious and gentle ensuring not to destabilize repair
 - Could this be done in more stable arc of DTM?

- Strength
 - Pain free and good mobility
 - Start isometrics in DTM working to isotonics
 - Perturbation exercises eg. Gyroscope, mini baps board
 - Reactive muscle activation

- Dynamic or Static Progressive Orthosis – not really in the plan

Variations in Rehabilitation Post SL Repair

- Dorsal Capsulodesis
 - AROM only, little or no passive flexion exercises except per MD

- RASL
 - Motion can begin early than SL repair
 - 4-6 weeks
Scaphoid Fractures

Location, Location, Location

- Blood flow to the scaphoid – retrograde distal- proximal
- Proximal Pole heals slower
- Risk for AVN
- Rests at 45 degrees angle to radius
- EDUCATION

Henry Vandyke Carter - Henry Gray (1918) Anatomy of the Human Body (See "Book" section below)
Bartleby.com: Gray's Anatomy, Plate 221
Diagnosing Scaphoid FX

- Palpation
- Radiograph
- CT
- MRI

Scaphoid Fractures

- Conservative Treatment
 - Initial Cast immobilization
 - Starts with Long Arm Thumb Spica cast transitioning to short art thumb spica
 - 8-12ish … or 24 weeks
 - Longer with proximal pole injuries –Why??
 - Thumb Spica Orthosis
 - Transition to when patient first starts motion
Scaphoid Fractures

• Conservative Treatment
 o Early mobilization phase
 • Transitioned from cast to orthosis
 • Start with gentle AROM
 • Role of DTM type exercises – Why is this a good place to start with scaphoid fractures?
 o PROM
 • Typically at least two weeks after AROM initiated
 o Strength with evidence of union
 • What would be good to start with?

Scaphoid Fractures

• What would we expect we will need to work on with these patients?
 o Important to educated initially on Digital ROM during immobilization phase
 o Thumb mobility – specifically composite flexion
 o In hand manipulation
 o Wrist motion
 • Initiation of wrist extension with wrist extensors rather than digital extensors
Scaphoid Fractures

• What would we expect we will need to work on with these patients?
 o Proprioceptive reflexes
 • DTM
 • Joint position sense
 • RMA
 • Perturbation training
Scaphoid Fracture

- Post Fixation
 - Orthosis Forearm based TSO
 - AROM initiated 6-8 weeks
 - PROM 2 weeks after initiation of AROM
 - Strength 2 weeks after PROM approximately
Objectives

- Identify methods for diagnosing distal radius (DR) fractures, factors that influence rehabilitation and outcomes in DR fractures, and an appropriate plan of care for DR fractures.
- Identify methods for diagnosing scapholunate (S-L) injuries, factors that influence rehabilitation and outcomes, and an appropriate plan of care for S-L injuries.
- Identify methods for diagnosing scaphoid fractures, factors that influence rehabilitation and outcomes, and an appropriate plan of care for scaphoid fractures.

Thank You!!!
Management of Upper Extremity Trauma

- **Mon 2/6** Understanding Multi-Trauma Hand and Upper Extremity Injuries
 Carol Recor, OTR/L, CHT
- **Tues 2/7** Wrist Detective: Investigating Traumatic Wrist Injuries
 Rachel Pigott, OTR/L, CHT
- **Wed 2/8** Management of Upper Extremity Nerve Injury
 Christine Novak, PhD, PT
- **Thurs 2/9** Occupational Therapist’s Management of Upper Extremity Burns
 Nora Barrett, MS, OTR/L, CHT
- **Fri 2/10** Tendon Trauma: Keys to Optimal Outcomes
 Rebecca Neiduski, PhD, OTR/L, CHT