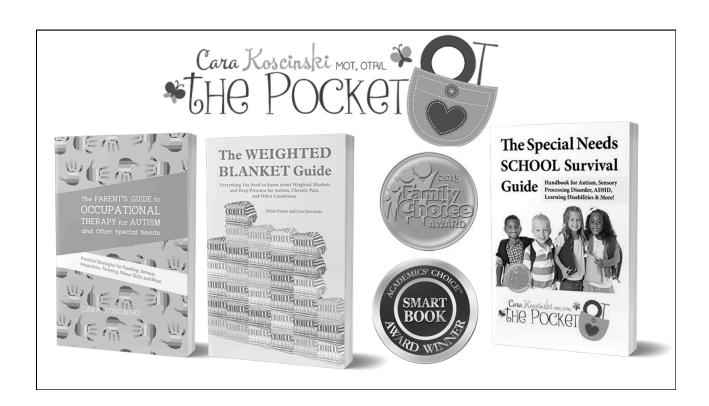
### continued

If you are viewing this course as a recorded course after the live webinar, you can use the scroll bar at the bottom of the player window to pause and navigate the course.

### continued

This handout is for reference only. It may not include content identical to the powerpoint. Any links included in the handout are current at the time of the live webinar, but are subject to change and may not be current at a later date.




# Building Healthy Brains: Sensory Strategies for Optimal Brain Function & Postural Concerns



By: Cara Koscinski, MOT, OTR/L
The Pocket Occupational Therapist
www.PocketOT.com











## Objectives

- 1) Describe the importance of movement to higher level brain function.
- 2) Identify physical manifestations of immature brain function.
- 3) Identify hands-on movement activities that can be applied to children in order to improve brain maturity, improve posture, and connect body systems.



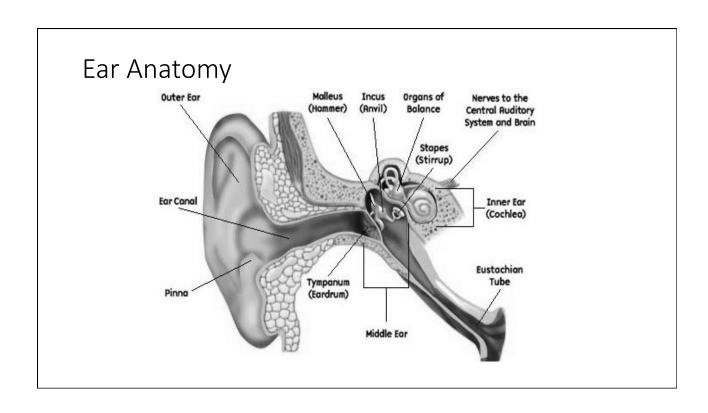
## Why Movement?

- Optimal function of our bodies occurs when our sensory and motor systems are strong and able to adapt to the demands of the environment. Today's children often struggle with fidgeting, decreased attention, and immature motor patterns which manifest themselves through frustration and behavior issues. When our body's systems are not integrated to form a strong foundation, difficulties in many areas occur. This session provides education about using movement to improve overall function.
- Instruction and hands-on movement activities are provided.

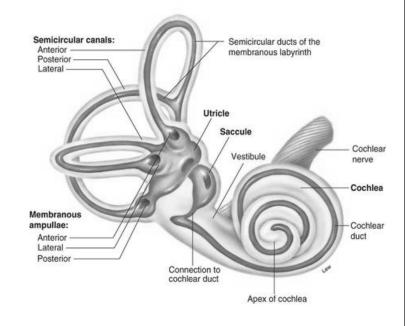


Photo: Fun & Function



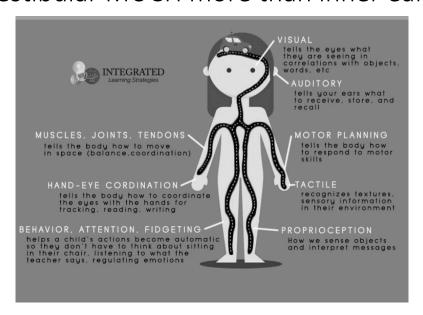

Babies placed into 'containers' for convenience OR by well-intentioned parents who misunderstand developmental progression




Video game and electronic device EXPLOSION limits active movement and physical exploration both in and outside.

Article: "The National Association for Sports and Physical Education recommends, "Young children should not be sedentary for more than 60 minutes at a time, except when sleeping" (2009).

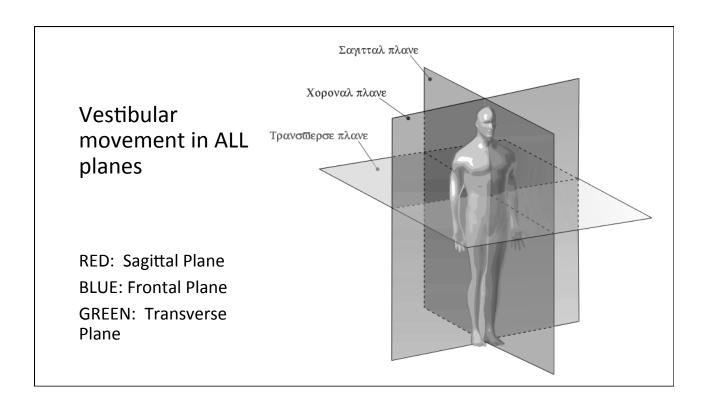


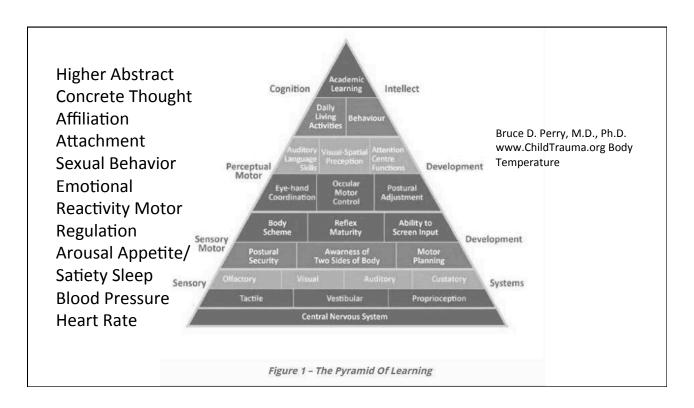



- Five vestibular receptors in each ear
- three semicircular canals (horizontal, anterior, and posterior) that transduce rotational angular accelerations
- two otolith receptors (utricle and saccule) that transduce linear accelerations (Lindeman)






### Vestibular MUCH more than inner ear




# The Vestibular System

© Sinauer Associates, Inc.









## How do we achieve modulation?

- Levels of Sensory integration:
- Modulation and regulation are in brain stem and mid brain.
- Begin with existence then move from chemical reactions to behavioral states.
- When a task is requested and child melts down as they 'fall apart' because they are simply existing as best they can. *REGULATION* is when we assist in the change. SELF-REGULATION is when the child makes the change.

| Part           | Healthy Brain                                                                                                                   | Injured Brain                                                                                                                                                                                          |
|----------------|---------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Frontal lobe   | Personality/emotions Intelligence Judgement Body Movement Attention/concentration Speech (speak & write)                        | Paralysis Repetition of a single thought Decreased focus Mood swings, irritability, impulsiveness Changes in social behavior & personality                                                             |
| Parietal lobe  | Sense of touch, pain, and<br>temperature<br>Distinguishing size, shape,<br>and color<br>Spatial perception<br>Visual perception | Difficulty distinguishing left from right Lack of awareness or neglect of certain body parts Difficulties with hand-eye coordination Trouble with reading, writing, naming Difficulty with mathematics |
| Occipital lobe | Changes in breathing Difficulty swallowing food and water Problems with balance and movement Dizziness and nausea (vertigo)     | Blind spots Vision deficits Visual illusions/hallucinations Difficulty reading and writing                                                                                                             |



| Part          | Healthy Brain                                                          | Injured Brain                                                                                                                                                                                                                 |
|---------------|------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Temporal lobe | Speech (understanding language) Memory Hearing Sequencing Organization | Difficulty understanding language and speaking (aphasia) Difficulty recognizing faces Difficulty identifying/naming objects Problems with short and long-term memory Changes in sexual behavior Increased aggressive behavior |
| Cerebellum    | Balance<br>Coordination                                                | Difficulty coordinating fine movements Difficulty walking Tremors Dizziness (vertigo) Slurred speech                                                                                                                          |
| Brainstem     | Breathing<br>Heart rate<br>Alertness/consciousness                     | Changes in breathing Difficulty swallowing food and water Problems with balance and movement Dizziness and nausea (vertigo)                                                                                                   |

## Signs of Complex SPD:

#### **Sensory MODULATION disorder**

- Problem regulating in response to input
- Results in withdrawl of/negative responses
- Signs:
  - Upset by noises and sounds
  - Easily distracted by visual stimuli
  - Difficulty falling/staying asleep
  - · Hypersensitivity to clothing

#### Sensory DISCRIMINATION disorder

- Problem in recognizing/ interpreting differences or similarities in qualities of stimuli
- Signs:
  - · uses too much force
  - Crashes/bumps into objects
  - Drops or knocks things over
  - · Afraid of heights
  - Poor balance



## Signs of Complex SPD:

#### Postural-Ocular disorder

- Problem w/ control of posture or control of movements seen in ms tone or joint instability and/or poor functional vision
- Seen in vestibular and prop. problems
- Signs:
  - Flat feet
  - Slumps while sitting
  - · Weaker than other children
  - · Fatigues easily
  - · Problems with eye-tracking

#### Dyspraxia

- Problem in planning, sequencing, executing unfamiliar actions
- Signs:
  - Awkward/poorly coordinated motor skills
  - Difficulty w/ ADLS
  - · Prefers routine
  - Awkward pencil grasp and patterns
  - Does not prefer sports

## Case study #1: Joshua

- Reflux
- GJ tube fed
- Mitochondrial disease
- Fear of making errors
- Flat feet
- Low energy
- Difficulty with reading and is two grades below in Language arts



| Assessment |  |  |
|------------|--|--|
|            |  |  |
|            |  |  |
|            |  |  |
|            |  |  |
|            |  |  |
|            |  |  |
|            |  |  |
|            |  |  |
|            |  |  |
| Assessment |  |  |
|            |  |  |
|            |  |  |
|            |  |  |
|            |  |  |
|            |  |  |
|            |  |  |



### Assessment:

- Weak Core
- Flat feet
- Tied together!
- Child has postural-ocular disorder

## Case study #2: Jacob

- Hypervigilant
- Retained moro -- easy startle
- Toe-walker and was serial casted by PT
- Fear of making errors
- Difficulty sleeping
- Poor balance
- Genius IQ yet few true friends



| Case Study 2 |  |  |
|--------------|--|--|
|              |  |  |



### Assessment:

- Weak Core
- Weak spinal reflexes
- Test for TLR (commonly have trouble riding a bicycle)
- Child has both sensory modulation disorder and sensory discrimination disorder

## Regulation:

- Emotional regulation = the ability to attain and maintain an emotional state that matches the task or setting.
- \*\*\*Depends on what you're doing. Only certain moods
  Are available because of your current body state.
- Required for ALL functions in human life
- Central nervous system: we need to breathe to balance our arousal.
- Motor and emotional regulation are BOTH affected with imbalance.





## How Do We Regulate?

### Sympathetic NS

- Sympathetic nervous system is the 'accelerator' to our body
  - \*\*Fight, Flee or Flight\*\*
- Cortisol
- Located in thoracic cord
- Sexual climax

### **Parasympathetic NS**

- Parasympathetic nervous system is the 'decelerator' to the system
  - \*\*Rest, Recover and Digest\*\*
- Located in sacral cord
- Also controls bladder
- Colon,
- Sexual arousal

### Three Levels of Brain Function:

- Arousal for basic survival and action. Posture in flexion and extension. Sense of self so focus is on needs and self
- Alertness, motivation, emotion for movement and action on the object. Postural is lateral flexion and weight shift. Task-based play, imagination, motivation/emotion, attends to environment – naturally occurs around pre-school
- Awareness for challenges, skills, actions to and in response to objects in surroundings. Postural skills are trunk rotation, rhythm, timing.
   Mature perspective, can complete entire routines with HOW, WHY, WHEN – naturally occurs at school aged +



## Signs of STRESS in children – Amygdala = FEAR

- Acting out/behavior
- Stomach and headaches
- Sleeping issues
- Anger or aggression toward others
- Dilated pupils
- Sweating
- Flushing of cheeks
- Wide "deer in headlights" eyes



## How Does It all BEGIN?




## Early Brain Function

- Born with a CHAOTIC brain
- •Through a process known as synaptic pruning, neurons that are not useful to the brain die off
- •Connections are building into an organized state by 2-3 years of age
- •The concept of neuroplasticity explores how the brain changes in the course of a lifetime and how different areas of the brain can evolve and adapt over time.

## Physiological Flexion

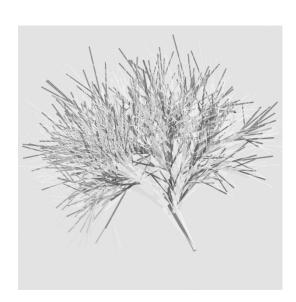
- Tonic Labyrinthine Reflex
- Present at birth (comes at 12 weeks in utero) and is progressively integrated between the 3<sup>rd</sup> and 4<sup>th</sup> year.
- Head flexes, (below level of spine) whole body flexes
- Head extends (below level of spine) whole body incl. arms, legs, and torso extend





## Maladaptive Postures




- Decreased or reversed spinal curvature
- Extension
- Developmental Interference: attachment, flexion, sitting, crawling, leg ext., rotation, dissociated movement, flexor and ext. imbalance

#### Physiologic Interference:

- Breathing, eating, position of diaphragm, tight upper trunk musculature,
- Oral motor structure in poor alignment

### **Brain Chemicals**

- Oxytocin
- Serotonin
- Cortisol (stress hormone)
- Acetylcholine

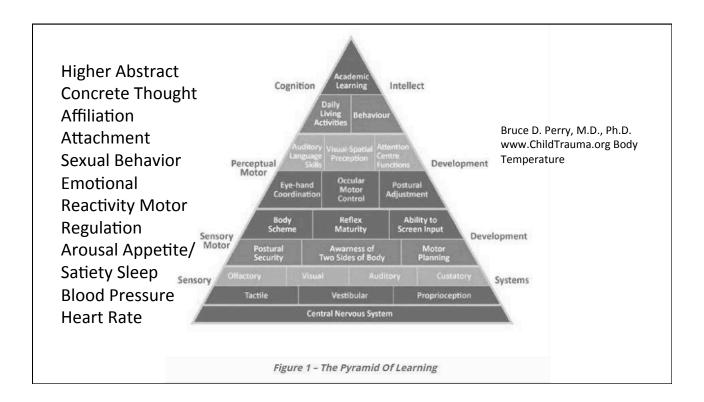




## Change Over Time:

- As we age, we change we become more SYMPATHETIC (not in personality but in our NS)
- Consider:
  - Increased heart rate
  - Increased blood pressure
- When children grow, they need more rest in order to recover and develop.

### Levels of Brain Function:


- Brain will do what it takes to SURVIVE so it uses compensation strategies.
- When a child has a stressed system, he is 'dysregulated.'
- This dysregulated child cannot focus on higher level brain functions because he's CONSTANTLY looking for potential threats in the environment.



## Signs of a Dysregulated Child

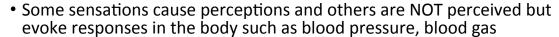
- Easily frustrated
- Worry and stresses easily
- Impulsive, irrational, aggressive Poor attention and focus
- Hyper aware of environment
- Poor fine motor skills
- Poor handwriting
- Insists on routine
- Difficulty with organization
- Panic attacks

- Difficulty sleeping
- Difficulty toileting
- Distracted by or bothered by smell, sound, sights, and sensory information
- Un-expected touch causes anxiety





## Perception is communication & interpretation


- Pons relays messages from the cortex and the cerebellum.
- Without the pons, the brain would not be able to function because messages would not be able to be transmitted, or passed along.



- Need interpreter via the sensory information to the cortex.
- Thalamus is responsible for relaying information from the sensory receptors to proper areas of the brain where it can be processed. If this part of the brain is damaged, sensory information would not be communicated.

## Perception is ALL about Interpretation!

- Stimulus can be
  - Perceived (phantom limb)
  - Or considered a Sensation



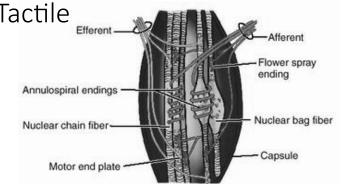
- Challenge: is HOW WE INTERPRET the information
  - Why we have visual tricks/puzzles
  - Why shots are more traumatic to some people
  - Why we THINK we move at a red light when someone next to us moves
  - Weber's Law demonstration \*\*\*\*What's important to one may not be registered by another\*\*\*\*



### Presentation Questions:

- How does maturation of our sensory and motor system improve school performance?
- How can you provide movement experiences to improve attention?
- What factors in today's society are detrimental to building a strong foundation in both movement and sensory experiences?

## What IS Self-Regulation?

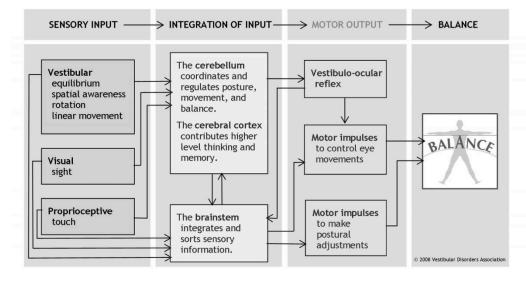

- Constant balancing of sympathetic and parasympathetic nervous system keeps us in a state of ability to interact with our environment this is REGULATION.
- Interplay between the two so our conscious matches what we are doing.
- How does STRESS affect us?



## Proprioception and Tactile

#### Tactile information is

received through the skin. There are at least six types of receptors. Notice disruption in their cell membranes or chemical changes.




#### Proprioception

Monitors position of joints, tendons of joints and ligaments and the state of muscular contraction.

Tendon organs which measure the strain on a tendon and muscle spindles which monitor the length of the skeletal muscle (Innvista.com) Therapeutic input lasts 2-4 hours.

## Combination of Vestibular, Prop, and Vision





## Core Stability

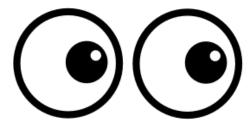
- Core muscles: help in developing mid-line
- Respiratory activation helps with Valsalva Maneuver



- Gravity and movement cause a baby to gain activation of the core muscles and refine as they grow and develop. Practice and development of many body systems (including: sensory, reflex integration, motor, and cognitive)
- Alignment changes w/ gravity and movement support activation of inner core team in first 2-3 years of life and refined into adolescence.
- Vision is important for hand-eye coordination, tracking/scanning for danger, etc.

## Why might a person struggle?

- In the child, stress and semicircular canal damage can cause low or erratic RAS function.
- They fluctuate in—and—out of wakefulness, particularly if they have no stimulation through movement. Much of their hyperactive movement is actually a means to stimulate and repair the damaged vestibular system, and maintain attention.
  - He may have a tendency to lose his balance easily and have playground accidents.
  - He will often violate another's personal space without realizing it, manifesting an incomplete understanding of spatial relationships in the environment. (http://www.naturaladdtreatments.com/vestibular-system/)




### Levels of Brain Function:

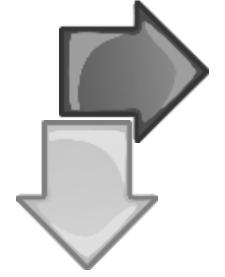
- When primitive reflexes are retained, there's a 'tug of war' between the brainstem and the higher levels of the brain.
- The cortex then must use too much energy for basic function and cannot do its own job: learning, thinking, attention to task.

## VISION is important!

- Our brain allocates a great deal of 'real estate' toward vision.
- Critical in ongoing postural reflexes that maintain upright position.
- Hand-eye coordination
- Dr. Roberto Kaplan






### Why VISION?

- "The brain is like a system of roads. Information travels from one location to another.
- If the roads are direct and smooth, the travel is easy. If construction creates a barrier, the highway is blocked and traffic is redirected into clogged side streets. There is still movement, but it is slow and frustrating.
- Children with severe visual dysfunction spend too much time on these side streets and the simple act of perceiving the world becomes a nightmare."
- Remember, VISION involves the brain as well as the eyes so it makes sense that disabled children would have a disabled visual system
- Children with behavioral problems typically have multiple sensory issues, and visual dysfunction is one of them. 80% of the information we receive from our environment is visual!

Dr. Marie L. Fox, OD Vision Therapist

### Oculomotor

- Marsden ball
- Hit a tennis ball with a stick/dow rod
- Balance board
- Arrows and jumping
- Toss bean bag in rainbow arc from one hand to the other and follow with eyes.
- Crawl with something on your back and rotate head side to side (ATNR integration)



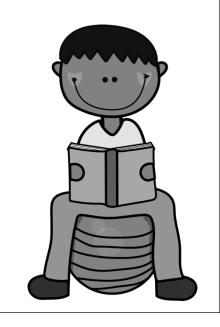


### Postural Control

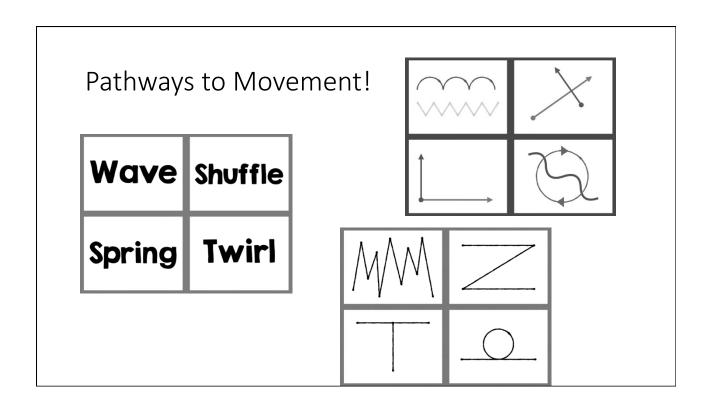
- Affected by self-regulation
- Multiple system involvement:
  - Primitive Reflexes
  - Muscles
  - Sensory system information and integration
  - Previous experiences
  - Nervous system

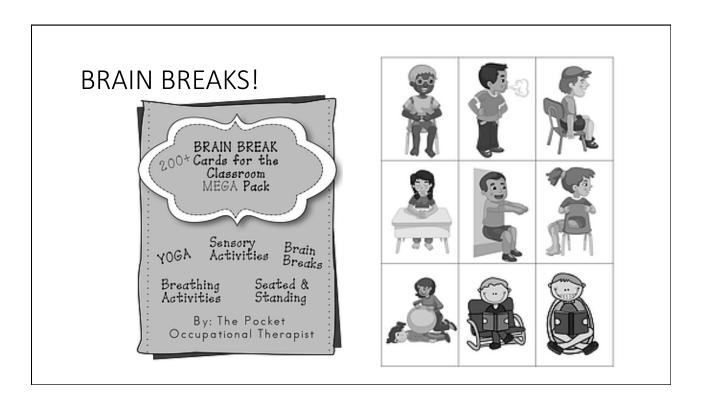


### Postural Reflexes


- Subconscious maintenance of posture
- Requirement throughout life to live against gravitational pull

#### **RIGHTING:**

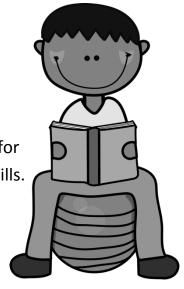

Birth throughout life Help when there's a loss of balance Head control through standing


#### **EQUILIBRIUM:**

Six mo throughout life Event-specific and unique to each situation! Cortex with cerebellum to fine tune Base of support












## Core stability

- Compensation Strategies
- Motor Patterns
- Breathing
- Rib cage, spine, pelvis alignment
- More compensation as time goes on.....not good for balance, gross motor, fine motor, oral-motor skills.

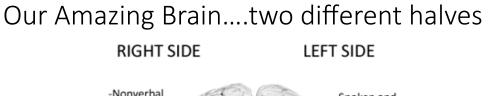


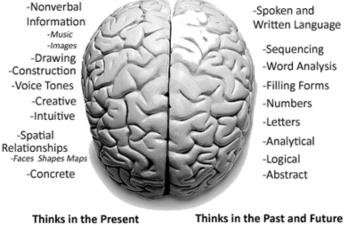
### **CORE** and Emotion

- Breath
- Posture
- Emotion
- Use of extremities
- Emotional arousal



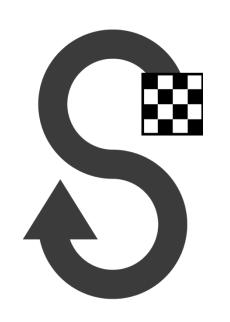



### Motor \*\*Muscles PULL but don't PUSH


- Jump on trampoline while catching a ball
- Pigeon and Duck walks
- Jumping over line w both feet
- Foot maze
- Make a box with each arm then each leg
- Balance beam
- Any activity requiring movement of body in coordinated way

### Motor

- Cross-Crawls
- Rock while in prone flexion (lineally and then laterally)
- SLOW the swing down
- Frog swing
- Straddle bolster and do activities which force midline crossing
- Bosu ball while tossing and catching
- Reaching for items presented backwards and behind
- Sitting back to back with OT to play 'around the world'





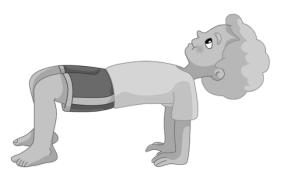



## Crossing Midline

- Elbow to Knee (Cross Crawls)
- Figure Eights (Brain Gym)
- Balance Walking
   Use taped line, curb, or 2 x 4 piece of wood
   Bend and pick things up while on beam
   Toss and catch while on the beam
   Balloon toss

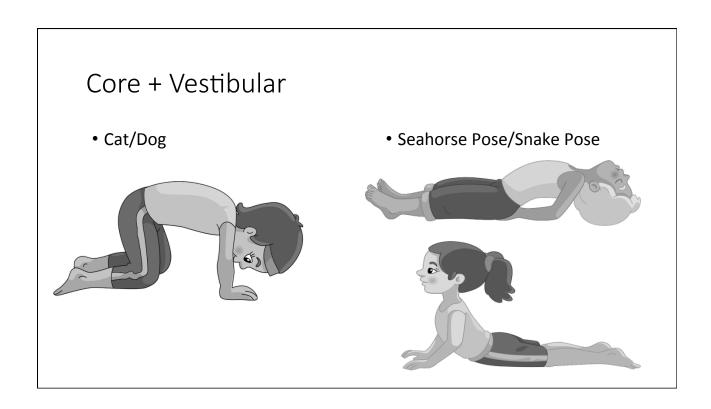


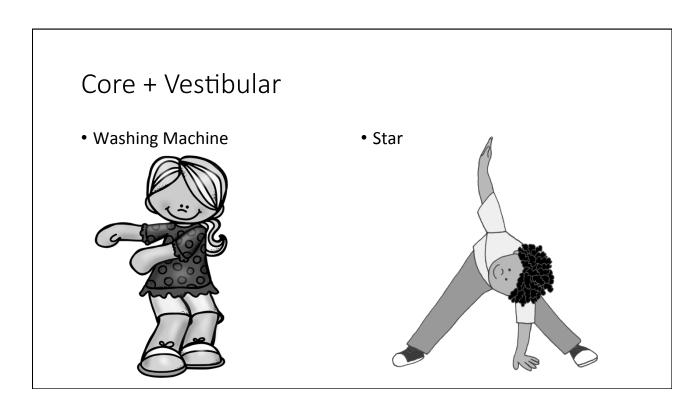



### YOGA + Public School PE Standards

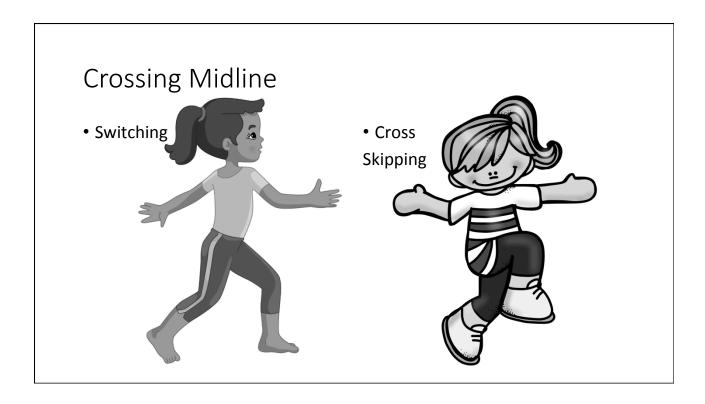
- Balance while bending and stretching
- Recognize that skill development requires practice
- Identify various body parts and location
- Move each joint in a full range of motion
- Learn teamwork through partners and groups
- Uses the entire body
- Move body safely

### Core + Vestibular


• Bridge (grade up and down)
















## **Complicated Poses**

Candlestick

Upside-down and 'blow' out toes.

Use with electric light OR match to see how we need oxygen



• Happy Baby





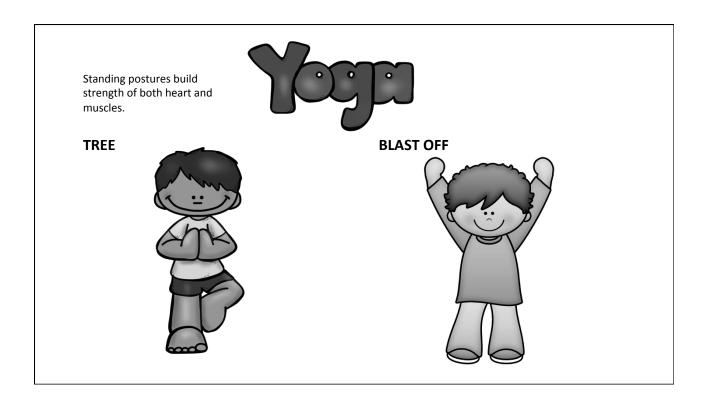
### MIND over Matter

- Let children experience ANXIETY!
- Use affirmations
- Theme songs
- Send love and kindness to our bodies while in poses.
- Can use with multi-sensory experience such as a food or flower. Each required a-lot of energy to get to the place they are in.








#### **RAG DOLL/Waterfall**



#### **Partner Poses**

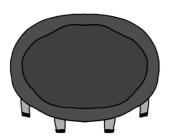
- Yogi says
- Freeze to music
- Musical mats like YOGA obstacle course
- Downward dog tunnel
- Back to back and lock arms
- Hold hands facing each other and pretend to 'sit'





## Attention and Focus

- YOGA Ball
- Standing Desk
- Hippocampus helps us to make new memories \*smaller in PTSD and severe depression.
- Mindfulness increases awareness of current surroundings and the HERE and NOW vs. what we THINK WILL HAPPEN (pre-conceived ideas).
- Connected socially with others, the universe,
- Life is ebb and flow of emotions and we simply ride them out.
   Psychology Today ~Melanie Greenberg, clinical psychologist.




## Calming Techniques

- Return to Flexion
- Lower lighting
- Decrease Environmental Stimulus
- Proprioceptive Input PUSH, PULL, LIFT, CARRY
- Sensory Processing Techniques:





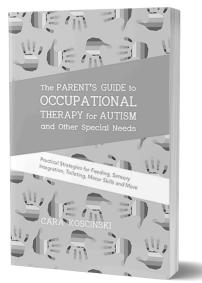


# Tune In and Focus on Mindfulness



- Focus in on and feel breath.
- Mind jar: shaken up represents our chaotic thoughts
- Deep breath = settling of our thoughts
- Breath is the anchor (touch backs to connect)
- Focus on who each student is and slow breath and mind down
- When in pose, think about connection to body.




### www.PocketOT.com



Twitter: @PocketOT

Facebook: www.facebook.com/

PocketOT/



### References

- Blomberg, H., Dempsey, M. (2011). *Movements That Heal*. BookPal. Australia
- Carson, V. et al (2016). Systematic review of physical activity and cognitive development in early childhood. Journal of Science and Medicine in Sport. <u>Volume 19</u>, <u>Issue 7</u>, July 2016, Pages 573–578
- Chadwick, J. and Gelbar, N., (2016) Mindfulness for children in public schools: Current research and developmental issues to consider, International Journal of School & Educational Psychology, 4:2, 106-112, DOI: 10.1080/21683603.2015.1130583
- Coon, D. Mitterer, J. O. (2013) *Psychology: A Journey* 5<sup>th</sup> Edition. University of Memphis.



### References

- Hannaford, C. (2005). Smart Moves, Why Learning Is Not All In Your Head. Great River Books, Utah.
- Hardison, M., Roll, C., (2016). Mindfulness Interventions in Physical Rehabilitation: A Scoping Review. American Journal of Occupational Therapy. April 2016, Vol. 70,7003290030p1-7003290030p9. doi:10.5014/ajot.2016.018069
- Jeremy P. Jamieson, Wendy Berry Mendes, Erin Blackstock, Toni Schmader, Turning the knots in your stomach into bows: Reappraisingarousal improves performance on the GRE, Journal of Experimental Social Psychology, Volume 46, Issue 1, January 2010, Pages 208-212, ISSN 0022-1031, <a href="http://dx.doi.org/10.1016/j.jesp.2009.08.015">http://dx.doi.org/10.1016/j.jesp.2009.08.015</a>.
- Kennedy, Keely (2016) *Brains in Motion: How to Utilize the Connection Between Movement and Learning in the Classroom.* Undergraduate thesis, under the direction of Chris Sparks from Integrated Marketing Communications, University of Mississippi.

### References

- LaRossa, M.M., (2017) Understanding Pre-Term Infant Behavior in the NICU. Emory University School of Medicine. <a href="http://www.pediatrics.emory.edu/divisions/neonatology/dpc/nicubeh.html">http://www.pediatrics.emory.edu/divisions/neonatology/dpc/nicubeh.html</a>
- Lubutzky, A.V., Harel, D., Darmanian, H., Perlin, K. (2016). Assessment via the oculus of visual 'weighting' and 're-weighting' in young adults. Motor Control. Volume:0 Issue: 0 Pages:1-27 doi: 10.1123/mc.2016-0045 DOI: http://dx.doi.org/10.1123/mc.2016-0045
- May-Benson, T. A., ScD, OTR/L, FAOTA, Alison Teasdale, Juliana Lopez De Mello Gentil; Gravitational Insecurity in Children With Sensory Integration and Processing Problems. Am J Occup Ther 2016;70(4\_Supplement\_1):7011500020p1. doi: 10.5014/ajot.2016.70S1-PO2007.
- National Association for Sport and Physical Education & American Heart Association. (2010). 2010 Shape of the nation report: Status of physical education in the USA. Reston, VA: National Association for Sport and Physical Education.



### References

- Monsanto, R., Mehmet Erdil, Henrique F. Pauna, Geeyoun Kwon, PhD, Patricia A. Schachern, Vladimir Tsuprun, PhD, Michael M. Paparella, Sebahattin Cureoglu, MD, Pathologic Changes of the Peripheral Vestibular System Secondary to Chronic Otitis Media. Otolaryngology Head and Neck Surgery. Volume: 155 issue: 3, page(s): 494-500. Article first published online: May 10, 2016;Issue published: September 1, 2016 DOI: https://doi.org/10.1177/0194599816646359
- Roley, S. S., Mailloux, Z., Parham, L. D., Schaaf, R. C., Lane, C. J., Cermak, S.; Sensory Integration and Praxis Patterns in Children With Autism. *Am J Occup Ther* 2014;69(1):6901220010p1-6901220010p8. doi: 10.5014/ajot.2015.012476.
- Sirgel, D. J., Bryson, T. P. (2015). The Whole-Brain Child Workbook. PESI. WI.

### References


- Stanford University School of Medicine (2017) Reflexes. URL: <a href="http://www.stanfordchildrens.org/en/topic/default?id=newborn-reflexes-90-P02630">http://www.stanfordchildrens.org/en/topic/default?id=newborn-reflexes-90-P02630</a>
- Stapel, J. C., Rosander, K. and von Hofsten, C. "Infants' use of multisensory information for postural control," 2016 Joint IEEE International Conference on Development and Learning and Epigenetic Robotics (ICDL-EpiRob), Cergy-Pontoise, France, 2016, pp. 202-203. doi: 10.1109/DEVLRN.2016.7846819 URL: <a href="http://ieeexplore.ieee.org/stamp/stamp.jsp?">http://ieeexplore.ieee.org/stamp/stamp.jsp?</a>
   tp=&arnumber=7846819&isnumber=7846776
- Story, S. and Kane, S. (2014). Brain and Sensory Foundations. Move, Play, Thrive. www.MovePlayThrive.com



## Web Resources & Clip Art Credit

- http://www.children-special-needs.org/vision therapy/ what is vision therapy.html
- http://synergyclinic.net/retained-neonatal-reflexes/
- Bruce D. Perry, M.D., Ph.D. www.ChildTrauma.org Body Temperature
- http://serendip.brynmawr.edu/bb/kinser/Structure1.html







