If you are viewing this course as a recorded course after the live webinar, you can use the scroll bar at the bottom of the player window to pause and navigate the course.

This handout is for reference only. It may not include content identical to the powerpoint. Any links included in the handout are current at the time of the live webinar, but are subject to change and may not be current at a later date.
Decoding and Understanding Transtibial Gait Biomechanics and Gait Deviations

Jared Howell, MS, CPO, FAAOP
Director, Baylor College of Medicine
Orthotics and Prosthetics Program

Foundational Objectives

• Articulate the key differences that make the amputated/prosthetic side unique when compared to the sound limb
• Develop an understanding of TT mechanical structure and alignable components.
• Learn about standard transtibial (TT) alignment parameters
• Develop baseline competence in identification of transtibial gait patterns.
So you have had a TT amputation, now what?

3 Underlying Mechanical Principles

Anatomical Changes Following TT Amputation

- Loss of Gastroc/Soleus Insertion
 - Reduces efficacy of gait
 - Reduces active knee extension
 - Poses risk to posterior compartment of the knee

- M/L Stability can be altered depending on mechanism of injury/cause of amputation
Soft Tissue Considerations

- In a socket all motion is transferred to the most proximal contact area
- The soft tissue of the residual limb takes the entire force of the body.
- The socket moves around the limb as a central axis.

Joint Considerations

- The foot and the ankle are particularly helpful in the dissipation of force during stance phase.
- The loss of the foot and the ankle means that forces are transferred to the proximal joints in the limb and spine.
Biomechanical goals

• 3 main biomechanical goals for TT prosthetics
 – Allow for maximum load bearing capacity on the limb
 – Promote knee flexion throughout stance phase
 – Provide optimal M/L stability throughout stance phase

Maximum Limb Loading

• How do you increase the load bearing capacity of the limb?
 – total contact
 – Increase surface area that is loaded
 – load the pressure tolerant areas more
 • relieve pressure sensitive areas
 – flex socket to improve loading
Maximum Limb Loading

• Total Contact
 – Load as much surface area as possible
 – prevent Verrucous hyperplasia
 – Increase proprioception

Maximum Limb Loading

• Increase surface area
 – How can you do this?
 – Increase trim lines (the shorter the limb, the more proximal the trimlines)
 – Joint and Corset
Maximum Limb Loading

- Pressure Tolerant areas

- Pressure intolerant areas
Maximum Limb Loading

• Flex socket (3 reasons)
 • Reason 1 is to maximize limb loading

Decoding Alignment

• The spatial relation of the ground contact (foot) to articulating parts (knees/ankles), to the interaction with the body (socket)
 • Bench Alignment
 • Static alignment
 • Dynamic Alignment
Alignable Components

Socket
Pylon
Ankle
Foot
Suspension

How is this alignment changed?

One set of Screws = angular change

Top and bottom screws = translational change
Prosthetic gait is 100% dependent on position of the ground reaction force in reference to the joints of the body.
Normal vs. Symmetrical

• Reason 2 and 3 deal with sagittal control
 #2 encourage knee flexion moment at heel strike
 #3 discourage knee extension moment at terminal stance
Sagittal Control

• 3 ways to encourage knee flexion
 – socket flexion
 – A-P placement of socket relative to the foot
 – Heel/toe durometer/flexibility

Sagittal Control

• A-P placement of socket relative to the foot
 – How does this promote knee flexion at IC?
 – How does this discourage an extension moment at terminal stance?
Sagittal Control

• A-P placement of socket relative to the foot

For a SACH foot
 – Textbook bench alignment is the foot bolt to be 37mm posterior to midline of the socket
 – final range is 18-65mm

For a Dynamic foot
 – Socket midline is set up typically between the first and second third of the foot. or per manufacturer’s recommendation

Test Your Knowledge

• Heel/Toe durometer or flexibility
 – Heel stiffness or durometer acts as the dorsiflexors. How?
 – What does the heel do?
 • Shock absorption
 • Hip and knee extensors control this shock absorption (greater activity required)
 – If it does not absorb shock, where does it get translated?
 • into abrupt knee flexion
Sagittal Control

– a cushioned heel will reach foot flat sooner, progressing the GRF anterior to the knee quicker
 • creating which moment?
 flexion, or extensions (circle one)
– The shorter the limb, the more cushioned heel, the less external knee flexion moment
– A stiff heel will create a more posterior GRF
 • creating which moment?
 flexion, or extensions (circle one)
– A stiff heel may also present as a rapid external rotation of the foot

Sagittal Control

• Socket flexion/extension
 – During stance, what moment acting against the limb does a flexed socket create?
 – What moment acting against the limb does an extended socket create?
The Affect of Poor Alignment

- Poor Alignment is just as detrimental to the health of the limb as a poor fitting socket
- Any open wounds need to be treated quickly and efficiently and should involve all members of the health care team

Transtibial Gait
Sagittal Control

• Heel stiffness

External Rotation of the Foot at Heel Contact

Sagittal Control

• Heel/Toe durometer or flexibility
 – Toe stiffness acts as what muscles?
 – too stiff creates what moment?
 – too soft creates what moment?
Sagittal Control

• Early Drop off and excessive dorsiflexion

 - Rapid loss off support in late stance
 - what excessive moment is being experienced?
 - Where will they experience discomfort?
 - They may feel this discomfort and not show physical signs of early drop-off
 - name 4 possible causes:
Sagittal Control

- Delayed progression/Halted gait/foot slap cushioned heel

Sagittal Control

- Delayed progression
 - Can create hyperextension
 - Requires much more energy
 - Name 4 possible causes
Sagittal Control

- Hyperextension

Flexion Moment
- Socket is anterior to foot
- Socket too flexed
- Toe lever is too soft
- Heel is too stiff

Extension Moment
- Socket is posterior
- Socket is too extended
- Toe lever is too rigid
- Heel is too soft
Sagittal Control Alignment Review

- Bench alignment
 - 5 flexion in socket
 - center of weight (sagittal midpoint at MTP) falls at 37mm anterior to SACH bolt, or between the first and second thirds for a dynamic foot
 - foot 5-7 degrees external rotation
- Static Alignment
 - Weight centered over foot. The patient does not feel like they are falling backwards or forwards
- Dynamic alignment
 - smooth rollover
 - no early drop-off or delayed progression

Medial-Lateral Stability

- Promote M/L stability during stance
 - create a varus moment at the knee for many reasons
 - mimics NHG and therefore:
 - Narrows base of support
 - Lowers energy expenditure (determinant of gait)
 - Loads pressure tolerant areas of the limb
 - lateral collateral ligament is less prone to injury
 - More flexible and stronger
Medial Lateral Alignment

Socket Adduction in closed chain

Medial-Lateral Stability

• Proper Abduction of the socket
 – Bench Alignment: depends on the limb. based on line obtained during casting
 – Mimics NHG
 – provides varus alignment
 – Not always ideal (Genu Valgum vs Genu Varum)

• Lets look at outset/inset
Medial Lateral Stability

• Forces that are applied

\[\Sigma M = 0 \]
\[F_{GRF} \cdot dx = (FP \cdot dy_2) + (FD \cdot dy_1) \]

What variables do we have control of?
Which force is greater, prox or dist?

If the proximal force is too great, what variables can we change?

As d_1 decreases what happens to the distal force?

How can you fix this problem?

The shorter the limb, the less the foot is inset

Medial Lateral Stability

Varus Moment
- Inset foot
- Socket abduction
- Associated pressures
 - Proximal Medial
 - Distal Lateral

Valgus Moment
- Outset foot
- Socket adduction
- Associated pressures
 - Proximal Lateral
 - Distal Medial

![Continued](image-url)
Medial Lateral Stability

• Excessive Valgus/Varus

Excessive Varus Moment

Medial Lateral Stability

• Excessive Abduction/Adduction

Excessive Ab/Adduction of the Socket
M/L Alignment Review

• Bench Alignment:
 – 12mm inset of midfoot to midline at MPT
 – adduction depends on the limb, based on line obtained during casting

Let’s review

• List three reasons why we flex the socket?

• With an excessive varus moment, where are the pressures experienced?

• With an excessive valgus moment, where are the pressures experienced?

• With an excessive flexion moment, where are the pressures experienced?

• With an excessive extension moment, where are the pressures experienced?
the end.

Questions?