If you are viewing this course as a recorded course after the live webinar, you can use the scroll bar at the bottom of the player window to pause and navigate the course.

This handout is for reference only. It may not include content identical to the powerpoint. Any links included in the handout are current at the time of the live webinar, but are subject to change and may not be current at a later date.
Upper Extremity Assessment: Elbow to Hand

Mike Szekeres, PhD (c), OT Reg (Ont.), CHT

Learning Objectives

By the end of the course, the participant will be able to:

- Identify appropriate assessments for determining the cause of pain and/or dysfunction for several common upper extremity conditions.
- Differentiate between capsular tightness, intrinsic tightness, and extrinsic tightness in the hand.
- Recognize the correct techniques for measurement of range of motion for the elbow, wrist, hand, and grip/pinch strength.
Today's Outline

- History
- Range of Motion
- Grip and Pinch Strength
- Volume
- Sensibility
- Stiffness
- Pain (Provocative Testing)
- Outcome Measures

History

- Most important part of assessment
- Develop rapport
- Obtain informed consent, release of information if needed
- Obtain information about injury, past injury, other medical conditions, treatment to date
- Document observations and investigations – look for pain behaviors and general posture of upper extremity while talking
- Determine goals (informal) This tends to happen with future visits in a busy setting. This applies to some assessments too.
History

<table>
<thead>
<tr>
<th>Date</th>
<th>Referring Source</th>
<th>Next Appt</th>
<th>Date of Injury</th>
<th>Dominance</th>
<th>Third Party Source (please circle)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>WSIB Insurance, Self Pay</td>
</tr>
</tbody>
</table>

Diagnosis:

Surgical Procedure/Date:

Occupation/Hobbies:

Consent received to release information contained in this database to:

Patient Signature:

Why Measure?

- Establish a baseline
- Document improvement (or lack thereof...)
- Determine effectiveness of specific treatments
- Some measures are surrogates for occupational performance
- Outcome measures can justify overall practice
AROM or PROM?

- Most of the ROM measurements we discuss will be AROM.
- There are some specific occasions when PROM is measured.

“Normal” AROM

- Elbow ext/flex: 0/145
- Wrist ext/flex: 70/75
- Wrist RD/UD: 20/35
- Pronation/Supination: 70 to 75 / 80 to 85
- Finger MCP ext/flex: 0 to +30/90
- Finger PIP ext/flex: 0/100
- Finger DIP ext/flex: 0/80
“Functional” AROM

- Different for all clients
- There are some numbers that we usually aim for:

- Elbow ext/flex – 30/130 \(^{(1)}\)
- Wrist ext/flex – 40/40 \(^{(2)}\)
- Pronation/supination – 50/50 – supination more important

\(^{(1)}\) Sardelli et al., JBJS 2011 93(5), 471-477

Goniometry

- Usually has good inter-rater and intra-rater reliability – within 5-10 degrees *
- Should select the appropriate size/type of goniometer
- Stationary arm is usually proximal, with the goniometer centred over the joint axis of rotation
- Notations are used for descriptive purposes
 1. 0 is neutral or full extension
 2. + means hyperextension
 3. - means extensor lag

Elbow Extension and Flexion

- Normal 0/140
- Goniometer centred over capitellum
- Proximal arm along humerus (not always the middle of arm)
- Distal arm between radius and ulna with forearm in neutral

Forearm AROM

- Sitting position
- Arm “eyeballed” perpendicular to floor
- Goniometer “eyeballed” to be perpendicular to floor then also over volar wrist with supination
- Sometimes inaccurate – currently developing a new method
Wrist Extension and Flexion

- 3 different techniques
- Radial, ulnar, dorsal/volar
- All acceptable reliability coefficients, but dorsal/volar is best – and easiest
- Carter et al. Accuracy and Reliability of three different techniques for manual goniometry for wrist motion J Hand Surg 2009 34

Wrist Radial and Ulnar Deviation

- Hand flat on table
- Proximal arm centred between radius and ulna
- Axis over lunate
- Distal end over centre of 3rd metacarpal head
Finger AROM

- Dorsal Approach, using a flat finger goniometer
- Wrist in neutral position
- Usually measure all joint in one finger rather than all MCP’s then PIP’s then DIP’s – to avoid cheating

Thumb AROM

- Similar to finger ROM
- Use dorsal placement for MCP and IP joint
Total Active Motion (TAM)

- TAM is a nice summary measure to describe the amount of active finger motion.
- When improvement is slow, this is a good way to encourage clients to keep at it.
- To record TAM, just add together the range at each joint for the MCP, PIP, and DIP.

TAM Examples

- MCP is 0/70, PIP is -10/80, DIP is -5/45
 - Total active motion is 70+80+45-10-5=180 degrees

- MCP is 0/80, PIP is +10/90, DIP is 0/50
 - Total active motion is 80+90+50+10=230 degrees
Other Measures

- Tip to Distal Palmar Crease (DPC) – measured in cm or mm
- Thumb Opposition – what finger?

Grip and Pinch Strength

- Reliable and valid measurement techniques
- Very well accepted methods of measurement using a dynamometer and pinch gauge
Grip & Pinch Strength

- When to measure grip and pinch strength?
- What does grip and pinch strength tell you?
- Is 20 kg good grip?

Grip Strength

- Seated
- Elbow at side, flexed to 90 degrees
- Forearm and wrist in neutral
- Average 3 trials, with adequate rest in between
- For screening, usually use handle position 2
Grip Strength

- Normative data is available
- Several studies looking at psychometric properties
- Best benchmark is almost always the contralateral side

Pinch Strength

- 3 types commonly measured
- Tip to tip
- Lateral (Key)
- Tripod
Pinch Strength

- Usually with forearm in neutral
- Wrist in slight extension
- Norms readily available
- Important to measure the same each time

Volume

- Volumeter is a standardized tool
- Dowel between long and ring fingers
- No touching the sides
- Water must completely stop
Volume

- Circumferential measures used around the elbow, wrist, PIP’s and DIPs

Volume

- When should you measure?
Assessment of Sensation

- Options:
 1. One point sensory threshold (Semmes-Weinstein Monofilaments)
 2. 2 Point discrimination – static and moving
 3. The Ten Test

Semmes-Weinstein Monofilaments

- Standardized measure with good reliability, sensitivity and validity with respect to sensory threshold
Semmes-Weinstein Monofilaments

- Each monofilament is a different thickness
- Hand usually supported with putty or a towel
- Applied perpendicular to the skin until it bends
- Held in place for 1-2 seconds then removed
- With vision occluded, client responds when they feel the stimulus

Semmes-Weinstein Monofilaments

- Smaller number means better one point sensory threshold
- 2.83 is the monofilament commonly used for screening and considered normal if you can feel this one
- Used to assess amount of nerve damage and for mapping nerve injury and recovery
Static 2-Point Discrimination

- Easier and faster to administer than Semmes-Weinstein
- A measure of the ability to detect 1 vs 2 points – not light touch sensory threshold
- Not as reliable as Semmes-Weinstein, due to differences in application pressure
- Moving even less reliable than static

2-Point Discrimination

- Hand supported in a comfortable position
- 7-10 responses should be correct for accuracy
- At the tip of finger, 3-4 mm is considered normal for static
- 7 mm normal for moving 2-point
- Remember to test along the digital nerve – not across 2 nerves
The Ten Test

- The patient develops a ratio between normal light moving touch and diminished moving touch.
- Subsequent determinations can detect serial changes.
- The ratios obtained can be compared with a standard scale of sensibility with a high degree of validity and reliability.

Stiffness

- Assessment of stiffness is usually performed by looking at PROM.
- We will discuss the assessment of hand stiffness since this is most difficult.
Stiffness

- In the hand, a limitation in passive joint motion can be due to 3 things:
 1. Joint capsule or peri-capsular structures
 2. Intrinsic muscle contracture or adhesion
 3. Extrinsic muscle contracture or adhesion

Assessment of Stiffness

- When you have stiffness, alter the position of adjacent joints
- If no change, think capsule
- If there is a change, consider what other structures you have tightened (or relaxed) to figure out the problem
- Once you have narrowed it down, you can select the appropriate treatment
Joint Capsule

- Think joint capsule if PROM does not change regardless of the position of surrounding joints

Intrinsic Muscle Contracture or Adhesion

- Intrinsic muscles pass volar to the axis of MCP, dorsal to PIP joint
- Thus, when tight or adhered, may limit MCP extension or PIP flexion
Extrinsic Contracture or Adhesion

- Long flexor tendons – Run volar to the axis of rotation for wrist, MCP, PIP, and DIP
- Long extensors – Run dorsal to the axis of rotation for wrist, MCP, PIP, and DIP

Example

- Figuring out what is causing a limitation in PROM requires critical thinking.
- If Jon has a 30 degree limitation in PIP flexion (can only flex his PIP passively to 70 degrees.
- This could be due to 3 possible problems – a joint contracture, intrinsic tightness, or extrinsic tightness
- How do we know?
Management of Stiffness

- Once you figure it out, how does it change your treatment?

Another example

- Jane has passive MCP ROM of -30/90.
- Capsule, Intrinsic, or Extrinsic problem?
- How do you test?
- If capsular, how do you treat?
- If intrinsic, how do you treat?
- If extrinsic, how do you treat?
Assessment of Stiffness Summary

- When you have stiffness, alter the position of adjacent joints
- If no change, think capsule
- If there is a change, consider what other structures you have tightened (or relaxed) to figure out the problem
- Once you have narrowed it down, you can select the appropriate treatment

Assessment of Pain

- Unfortunately, when a client has pain, the best way to figure out what is wrong is to reproduce their pain with clinical tests. This “provoking” of pain gives us the term:

 Provocative Testing
Provocative Testing

- Purpose of provocative testing is to help narrow down the source of pain
- For many of these tests we will talk about sensitivity and specificity. What does this mean?

Sensitivity

- The proportion of patients with the target disorder who have a positive test result
- \[a/(a+c) = 84\% \]

<table>
<thead>
<tr>
<th></th>
<th>Surgical Result</th>
<th>RC torn (+)</th>
<th>RC intact (-)</th>
</tr>
</thead>
<tbody>
<tr>
<td>US</td>
<td>RC torn (+)</td>
<td>42</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>RC intact (-)</td>
<td>8</td>
<td>86</td>
</tr>
</tbody>
</table>

\[a = 42, \quad b = 14, \quad c = 8, \quad d = 86 \]
Specificity

- The proportion of patients without the target disorder who have a negative test result
- \(\frac{d}{b+d} = 86\% \)

<table>
<thead>
<tr>
<th></th>
<th>Surgical Result</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RC torn (+)</td>
</tr>
<tr>
<td>US</td>
<td>42</td>
</tr>
<tr>
<td>RC torn (+)</td>
<td>a</td>
</tr>
<tr>
<td>RC intact (-)</td>
<td>8</td>
</tr>
</tbody>
</table>
Provocative Tests at the Elbow

- Pivot Shift Test, push up test – testing for lateral instability of the elbow
- Moving valgus stress test and milking manoeuvre – testing for medial instability
- Resisted third finger extension test (Mills test) or resisted wrist extension for lateral epicondylalgia

LATERAL ULNAR COLLATERAL LIGAMENT

- Important varus and rotational elbow stabilizer
- Usually torn in elbow dislocations: late posterolateral rotatory instability occasionally seen

Morrey et al 1985, O’Driscoll et al 1992
Josefsson et al 1987
Signs and Symptoms of Possible Lateral Instability

- Clicking with motion
- “My elbow feels like it pops”
- Pain with varus loading and supination
- Inability to do a push up or push off a chair

REMEMBER THESE SYMPTOMS ARE SENSITIVE BUT NOT SPECIFIC

The Lateral Ulnar Collateral Ligament

[Images of surgically treated joint]
Causes of PLRI

- Doesn’t just “happen”
- Trauma
 - Multiple injections for tennis elbow
 - Iatrogenic from tennis elbow release
 - Growth abnormalities / Congenital

Suspect Someone has PLRI – How to test?

- Possible clinical tests – useful when sent an “elbow sprain”
 - Straight varus loading
 - Hypersupination
 - Chair push up
 - Lateral pivot shift test
When NOT to Test

Push Up Test
Chair Push Up

Lateral Pivot Shift Test
MCL Important?

MEDIAL COLLATERAL LIGAMENT

- Important valgus elbow stabilizer
- Can be completely torn in elbow dislocations
- Attritional ruptures frequently occur in baseball pitchers

VALGUS STRESS TEST

MILKING MANOUVER (O’Brien)

- Patient performed
- 70-90°
MOVING VALGUS STRESS TEST

- Full ER at 90° ABD
- Valgus torque
 1. 45° = OCD lesion
 2. 70° - 120° = AMCL
 3. Terminal extension = Trochlear chondral lesion
- O'Driscoll et.al. 2005

Final thoughts on elbow instability

- Remember when NOT to do these tests
- PLRI is more common than MCL insufficiency
- Diagnosis of instability is rarely made on these tests alone
- These tests give us an idea that there may be instability
Lateral Epicondylosis (Tennis Elbow)

- Very common condition
- Most common source of lateral elbow pain
- Usually starts as an inflammation of ECRB
- Most non-acute cases are not inflammatory, but degenerative

Clinical Tests for Lateral Epicondylosis (Tennis Elbow)

- Tenderness with palpation over lateral epicondyle
- Pain over this area with resisted extension of the long finger or wrist
- Usually a decrease in grip strength due to inability to co-contract
Provocative Tests for the Wrist

Radial Tests
- Finklestein’s Test
- CMC Grind Test
- Tinel’s over DRSN

Dorsal Tests
- Scaphoid Shift Test
- S-L and L-T Ballottements

Ulnar Tests
- Ulnar Fovea Sign
- GRIT
- TFCC Load Test

Volar Tests
- Phalen’s
- Median Tinel’s
- Allen’s

Questions

Please answer yes or know to this statement:

I know my basic wrist and hand anatomy, including the names/locations of the carpal bones and the location of the muscles and tendons in the hand.
Finklestein’s Test

- Thumb in fist
- Passively push wrist into ulnar deviation
- Positive if pain in 1st dorsal extensor compartment
- Indicative of DeQuervain’s Tenosynovitis

CMC Grind Test

- Hold client’s thumb
- Apply axial load, twist metacarpal back and forth
- Positive if pain in at the base of the 1st CMC
- Sensitivity 42%
- Specificity 91%
Dorsal Radial Sensory Nerve

- Tap along course of nerve
- Can elicit paraesthesia in distribution of the nerve
- Sometimes confused with DeQuervain’s

Scaphoid Shift Test – Testing the S-L

- Start in ulnar deviation and slight wrist extension
- Pressure on distal pole of scaphoid to prevent it from flexing
- Move to radial deviation and slight wrist flexion and let go of pressure
- Painful “clunk” if positive
- Must compare to other side
- Sensitivity and Specificity both about 67%
Ballottement Tests for S-L and L-T

- General test to screen for issues over these ligaments
- Sensitivity 66%
- Specificity 44% - low because this often hurts even with a normal wrist

Ulnar Fovea Sign – Ulnotriquetral ligament test

- Pressure distal to ulnar styloid just dorsal to FCU tendon
- Pain with pressure indicative of a positive test
- Sensitivity 95%
- Specificity 86%
Gripping Rotatory Impaction Test (GRIT)

- Place arm by side and elbow in 90 degrees of flexion
- Using a grip dynamometer, measure grip in 2 positions: full supination, full pronation
- GRIT Ratio = (supinated grip strength) / (pronated grip strength)
- GRIT ratio is greater than 1.0 indicates possible ulnar impaction syndrome

TFCC Load Test

- Supinate forearm
- Ulnar deviation and axial load on ulnar wrist
- Reproduction of pain a positive test and may indicate TFCC tear
Phalen’s Test

- Passive wrist flexion for up to 1 minute
- Positive test reproduces parasthesia in median nerve distribution
- Sensitivity 68%
- Specificity 71%

Median Nerve Tinel's

- Tapping over median nerve at wrist
- Positive test reproduces parasthesia in median nerve distribution
- Sensitivity 64%
- Specificity 83%
Allen’s Test

- Pressure over radial and ulnar arteries
- Client makes 10 fists to drain blood from hand
- Alternately remove pressure on each artery and ensure perfusion

Thumb UCL Tear Assessment

- Very common injury (Skier’s Thumb)
- Grasp thumb metacarpal with one hand, place radial stress on thumb proximal phalanx
- Positive test is either pain or gapping
- Test contralateral side to compare
Testing for FDP function

Testing for FDS Function
Self-Reported Outcome Measures

- A necessary component of every hand therapy practice
- Validates what you are doing is helping (or not…)
- We need to continually validate our practice for
 1. Our clients
 2. Ourselves
 3. Our employers
 4. Third party payers
 5. Policy Makers

Common Self Reported Outcome Measures

- DASH
- PRWE
- PREE
- PRUNE
- SF 36
- COPM
- Michigan hand
Disabilities of the Arm Shoulder and Hand

- DASH
- Probably the most common general outcome measure used in hand therapy practice and in upper limb research
- Easy to administer and score
- Minimally important difference – 11 points
- Established reliability, validity, and responsiveness to many upper limb disorders
- Detractors will suggest that it is not responsive for all conditions since it is not region specific

Region Specific Questionnaires

- Patient rated elbow, wrist, and ulnar nerve evaluations
- PREE, PRWE, PRUNE
- Region specific, with established validity and responsiveness
- Developed at HULC by Dr. Joy MacDermid
What We’ve Covered

- History
- Range of Motion
- Grip and Pinch Strength
- Volume
- Sensation
- Stiffness
- Pain (Provocative Testing)
- Outcome Measures

Questions? mike.szekeres@gmail.com