Cardiovascular Physical Therapy: Treatment Part 2

Presented by: Bini Litwin PT, DPT, PhD, MBA

Moderated by: Calista Kelly, PT, DPT, Cert. MDT, Managing Editor, PhysicalTherapy.com

Earning CEUs

- Must be logged in for full time requirement
- Must pass 10-question multiple-choice exam
- Log in to your account and go to Pending Courses under the CEU courses tab.
- Must pass exam within 7 days of today
- Two opportunities to pass the exam

Download Handouts

Click to highlight handout
Click Save to My Computer
Goals

- Use the clinical decision making model to identify patients with limited activity tolerance who may benefit from PT
- To assess and develop a physical therapy plan of care giving consideration to the cardiopulmonary demands of exertion for patients with primary or secondary cardiovascular pathology
- To discriminate between normal & abnormal responses to activity

WHEN TO STAY AND WHEN TO GO!!!

Treatment: Plan of Care

- Will depend on setting and acuity of patient
 - Acute, outpatient, rehab, home
- Need to consider pre-existing status
 - Home, work environment, co-morbidities
- Need to consider patient needs, wants
- Use clinical decision making & problem oriented approach to document findings & establish goals and POC
The overall goal of physical therapy for patients with cardiovascular compromise is to increase O$_2$ delivery while decreasing relative functional demands on the patient.

Role of Physical Therapy

- Assess O$_2$ delivery with each ↑ in metabolic demand
- Metabolic demand (MET level) is estimated to assist in determining safe levels of participation

The physical therapist should document factors that demonstrate how well the patient’s O$_2$ delivery system supports metabolic demand imposed by functional training.
Treatment Goals

- Prevent airway obstruction
- Prevent accumulation of secretions
- Improve airway clearance
- Improve endurance & ex-
 - Work move efficiently
- Maintain/improve physiological responses to activity
 - VO2 uptake, RPE, HR, RR, SV
- Reduce energy costs during activity
- Improve O2 transport, promote ventilation
- Promote relaxation
- Improve cough production
- Maintain or improve chest mobility
- Improve breathing pattern
- Prevent/limit systemic effects of immobilization
- Restore/improve function
- Effect behavioral/lifestyle changes
- Provide patient/family education (self monitoring)

Treatment Choices

Oxygen Delivery
(Supply: DO2)
- Breathing retraining
- Body positioning
- Airway Clearance

Oxygen Utilization
(Demand: VO2)
- Conditioning
- Strengthening
- Functional Training
- ↓ Energy Cost - Devices

PT Treatment Monitors

- Monitor during treatment:
 - Exercise intensity/RPE
 - Blood pressure (before, during, 1-5 min. post)
 - Pulse rate (before, during, 1-5 min. post)
 - Respiratory rate (dyspnea scale)
 - O2 saturation
 - General appearance: color, perspiration
 - ECG/Heart sounds
 - Anginal pain
- Decrease activity 10-15 beats below level where pain started
PT Treatment: Issues of Concern

- Patient in danger of arrest if:
 - Don’t warm up/cool down before & after exercise
 - Exercise above safe limits
 - Has low serum K+ values
 - Effects polarization of heart
 - Watch if on K+ depleting diuretics
 - Monitor CBC (infection), thyroid values (metabolic rate)

Treatment Plan of Care: Considerations

- Pre-existing diagnoses
- Acuity of patient
 - Ventricular tachycardia
 - Ventricular fibrillation
 - AV blocks
 - Sinus tachycardia
 - Pulmonary edema
 - Heart Failure
 - Cardiogenic shock

POC Considerations* (Hillegass)

- Heat and humidity
 - 80/80 rule
- Cold
- Altitude
Re-assessment

- Patient's should be re-assessed at each visit
- Modify treatment based on findings
- Modify STG and LTG if necessary
- Adjust patient's POC if necessary
- Re-state prognosis if appropriate

Graded Activity: Testing and Exercise

Graded Activity

- Primary cardiovascular diagnosis
 - Practice patterns 6A, 6B, 6D
- Secondary cardiovascular diagnosis
 - Neuromuscular
 - Musculoskeletal
 - Post-op
 - Medical
 - Integumentary
Graded Testing: Purposes

- Differential diagnosis
 - To identify symptoms - need to “stress”
- Assess medications
- Develop exercise prescription
 - What are safe levels for exercise
- Predict max VO$_2$/estimate functional ability

Graded Testing

- **Symptom limited/maximal** level
 - Terminate when reach maximal predicted HR or when limited by symptoms
- **Submaximal** (low level) testing safer & more comfortable
 - Pre-determined end point e.g. THR
 - May not be intense enough to find abnormalities
 - Done in hospital or after discharge
 - May be performed w/in 4-6 days after MI
- Need to understand signs and symptoms; abnormal vs. normal response to exercise

Graded Test: Safety Considerations

- Predict level of risk
- Appropriately medicated
- Trained staff
- Emergency care
- Properly supervised
- Patient familiarization
 - Cognition
Graded (Aerobic) Exercise

- Walking
- Arm Ergometry
- Leg Ergometry
- Combined Arm and Leg
- Treadmill
- Stair Climbing/Stairmaster
- Rower
- Elliptical

Activity Selection

- Chose test that aligns with functional activities
 - Serve as basis for training
 - Patient ‘comfort’ level
- Physician clearance
 - Hx of heart condition, cardiac meds
 - Pain in chest with activity or at rest
 - Pre-existing morbidity that is limiting activity e.g. dizziness, musculoskeletal limitations

Graded Activity: Protocol Selection

- TM, cycle, seated, pharmacological
- Usually lasts 8-12 minutes
 - Can be maximal or submaximal
- Intensity increased in steps
- Type of test determined by age, physical condition, health status, risk factors
- TM gives the best estimate of VO\(_2\) max in fitness testing for healthy subjects
- Patients get more CV stress with supported combined arm and leg activity (Gapmair E et al. MSSE 33:133-134)
Treadmill Protocols

- **Bruce**
 - Most commonly used w/ younger, fitter pops
 - Lower extremity stress is 1 due to?
- **Modified Bruce**
 - VO2 prediction
 - Lower grade inclines
- **Naughton**
 - Better for diseased pops - more gradual incl in intensity
 - Starts at grade
- **Balke**
 - Starts at 3.3 mph
 - Slowest/lowest incline increase
 - Good with older individuals
- **Modified Bruce**
 - VO2 prediction
 - Lower grade inclines
- **Naughton**
 - Better for diseased pops - more gradual incl in intensity
 - Starts at grade
- **Ramp vs. Staged**
 - Myocardial ischemia attenuated (lessened) w/ gradual incl in intensity than w/ standard staged Bruce protocol

Treadmill: Monitored/Unmonitored

Unweighted Treadmill Walking
Walking Tests/Activity

- Timed walk tests
 - 12 minute walk test
 - 6 minute walk test
 - 2, 3 minute walk test
 - Field endurance tests (1 mile walk/run)

- Defines patient’s ability to exercise
 - Intensity performed to where symptoms begin

- Improved results w/ 2nd test d/t learning effect
 - Demonstration prior to test

- Described differently in different references

- Studies use walk distance, walk time, walk work as outcomes

Six Minute Walk Test

- Patient walks at fastest pace possible
 - Record distance, time and rests taken
 - Calculate walking speed and compute METs
 - 100’ course
 - Circular vs. straight

- Monitor BP/HR, pt. hx sitting

- Instruct in RPE, scales, etc.

- Monitor and record responses pre, during, after
 - Chairs placed periodically for rests if needed

- Stop based on patient’s S/S

- Valid, reliable measure
 - Correlates with VO2 max for elderly, COPD, CHF
 - Predictive of death w/ mild to moderate CHF

Physiological Cost Index (PCI)

- Measures relative costs of walking/unit of distance walked

- Compares energy costs between different conditions
 - Walking vs. wheelchair propulsion
 - Pre/post intervention
 - With/without assistive device

- PCI= (HR walking - HR rest)/average speed= _____ beats/minute
Standard Cycle Ergometry: YMCA Sub-Maximal Protocol

- 3 minutes stages of continuous exercise
 - 2-3 minutes per stage
- 50 RPMs maintained throughout
- 25 watts - 1st stage
 - 10-15 watts for older individuals
- Seat adjusted with 10° knee flexion

Cycle Ergometry Protocols

Lung Disease:

- Mass. Respiratory Hospital
 - ↑ 5 w every 20 sec (FEV₁ < 1L)
 - ↑ 10 w every 20 sec (FEV₁ > 1L)
- Godfrey (Children w/ CF- 1974)
 - ↑ 5, 10, 15 w based on height/FEV₁

Jones and Campbell N Eng J Med 293:541 1975

Clinic Protocols: Restorators

- Positions
 - Supine – LEs
 - Sitting – LEs
 - Sitting – UEs
 - Standing - UEs
Upper Extremity Restorators

Lower Extremity Restorators

Arm Ergometry: Advantages

- Use w/ patients having LE impairments
- Ortho/musculo-skeletal, amputation, vascular insufficiency, neurological injuries
- Diagnostic for assessing CAD
- May ↑ work to diaphragm in COPD
Arm Ergometry: Disadvantages

- Poor BP & ECG monitoring
- Lower VO₂ Max/more variable
- ↓ Efficiency w/ ↑ workload
- ↑ RPP
- Local fatigue before CV stress

Upper Extremity Functional Activities

Elevated Arm Work
Submaximal Work: Arm vs Leg

At the same power output (watts) arm vs. leg, arm will to a greater extent:

- ↑ HR
- ↓ SV
- ↑ VO$_2$
- ↑ Ventilation (Ve)
- ↑ BP or MAP
- ↑ RPP

Collett & Liljestrand 1924; Miles DS et al. JAP 57:366-70, 1984

UE vs LE Exercise

- UE = greater demand on heart (increased work)
 - More readily symptomatic
 - Smaller muscles
 - Greater energy expenditure
 - SBP & HR greater at same work loads
- Work both UE & LE for max benefit

Combined Arm and Leg Work

![Combined Arm and Leg Work](image)
UE vs LE Exercise

Perform approximately 40% work with LE to:

- ↓ VASCULAR RESISTANCE
- MAINTAIN VENOUS RETURN
- ↓ RELATIVE MYOCARDIAL DEMAND

Sawka MN. Ex Sport Science Reviews vol 14, 1986
Toner MN et al. MSSE 22:773-778. 1990

Normal Response to Exercise

• Normal Response:
 - CO x HR increases linearly as the workload & O2 consumption demands increase
 - Max HR decreases w/ age
 - Blood pressure: systolic will rise but diastolic will remain level or increase slightly
 - BP affected by body position; cuff size; acute pain presence

Abnormal Response to Exercise

• Abnormal Response:
 - HR does not increase linearly w/ increased workloads
 - On ECG the ST segment will depress (ischemia) or elevate (heart injury)
 • 1mm depression may be normal at high intensity exercise
 - Blood Pressure:
 • Systolic: remains level during ex or stays high after ex
 • Diastolic: increases >/=20 mm Hg or decreases after ex
 • >240 SBP with exercise
 • >110 DBP with exercise
Abnormal Response cont’d

- Angina symptoms appear, escalate, change in intensity during exercise.
 - Can “work through” angina if no change from “normal” level
 - Lower intensity of exercise-monitor symptoms

- Abnormal heart rate: bradycardia, tachycardia
 - May relate to meds

- RR > 25 bpm

- Irregular pulse

- \(O_2\) saturation < 85
 - Sign of desaturation

Aging Changes: Implications for Exercise

- Need to exercise to maintain function

- Variety of assessment tools used
 - Bike ergometer for those w/ poor balance
 - Treadmill
 - Can increase grade instead of speed for older patients
 - 6 minute walk test-most commonly used

- Exercise prescription
 - Must relate and adapt to individual’s interests, lifestyle

Cardiovascular Treatment Parameters: Continuum of Care
Treatment Indications: CV Primary Diagnosis

- Medically stable
 - Hemodynamics, ECG, response to self-care/ambulation activities
- Complicated/uncomplicated MI
- Congestive heart failure (stable)
- Heart transplant
- Stable angina
- CABG; angioplasty
- Valve replacement
- Practice Pattern B, D

Treatment: Plan of Care

- Improve CV fitness level within safe limits
 - Supply able to meet demand
- Restore ability of patient to work at functional levels of activity
- Promote lifestyle changes through patient education and behavior modification
- Prevent new or recurrent CV complications
- Promote return to prior IADL level

Treatment Benefits

- VO2 and CO improves; RPP decreases
- Threshold for cardiac symptoms increases
- Loss of body weight/fat
- Decrease in lipid levels; increase in HDL levels
- Decrease in BP
- Improve glucose insulin levels
- Cardiac mortality decreased*

*Taylor, Brown, et al., ACP Journal Club, Nov-Dec, 2004; AHA, 2005
Treatment Team

- Physician
- Physical Therapist
- Occupational Therapist
- Nurse
- Exercise Physiologist
- Recreational Therapist
- Dietitian
- Psychologist/social worker
- Vocational Counselor
- PATIENT and family

Treatment Continuum

- Positioning and splinting
- Airway clearance
 - Percussion and vibration
 - Postural drainage
 - Cough maneuvers/enhancement/huffing
 - Suctioning
- Oxygen supplementation
- Exercises
 - ROM, flexibility
 - Passive, active assistive, active
 - Progress to resistive

Treatment Continuum

- Breathing Strategies
 - IMT/Spirometry
 - Expiratory techniques
 - Chest wall stretching
 - Diaphragmatic, segmental, pursed lip, stacking breaths
 - Thoracic mobility exercises
 - Paced breathing
- Relaxation techniques
- Energy conservation/work simplification
Treatment Continuum

- Functional training/mobility
 - Bed, chair, upright
 - Family: Home environment
 - Community/IADL’s
- Graded endurance:
 - Intensity, Duration, Frequency, Mode
 - Vary-adjust to patient acuity
- Patient education
 - Lifestyle modifications/Psychosocial issues
- Discharge planning

Treatment Parameters: Risk Stratification (AACVPR)

<table>
<thead>
<tr>
<th>Low</th>
<th>Moderate</th>
<th>Severe</th>
</tr>
</thead>
<tbody>
<tr>
<td>No ischemia</td>
<td>ST segment depression > 1-2 mm w/ ex</td>
<td>Marked ST (>2mm) segment depression w/ ex</td>
</tr>
<tr>
<td>EF >= 50%</td>
<td>EF = 31-49%</td>
<td>EF <= 30%</td>
</tr>
<tr>
<td>>= 6 METS-3 wks post event</td>
<td><5-6 METS-3 wks post event</td>
<td>Complicated cardiac incident</td>
</tr>
<tr>
<td>Uncomplicated cardiac event</td>
<td>Failure to comply w/ exercise ex</td>
<td>Survivor of cardiac arrest</td>
</tr>
</tbody>
</table>

Treatment Purpose: Acute/Inpatient Setting (Phase I)

- Occurs in acute/inpatient setting
- Minimize effects of bedrest and deconditioning
- Promote cardiovascular fitness
- Support psychological recovery following cardiac event
- Provide secondary prevention of CV disease
- Encourage interdisciplinary approach to CV rehabilitation
Acute/Inpatient Setting: Purpose

- Prepare for safe performance of activities following IP discharge
 - Patient/family education
- Evaluate physiological response to activities
 - Feedback of patient response to establish safe treatment, medication parameters

Acute/Inpatient Treatment Parameters

- Initiate day 1 post-op CABG; 3-5 days post MI
 - When patient medically stable
 - Several times/day; short duration
 - Increase frequency/duration as tolerated
 - Progression dependent on physiological response to activity
- ALOS < 5-6 days
 - Dependent on patient PMH, acuity, age, etc.
 - STG = 3-5 days
 - LTG = 5-10 days

Acute/Inpatient Treatment Parameters

- Functional graded (endurance) activities
 - Monitored ambulation, ADLs
 - Begin at 1-2 METs
 - Goal is 3-5 METs at discharge
 - 3.0 MPH on TM
- Passive, active assistive, active exercises, ankle pumps
- Energy conservation/Work simplification
- Breathing exercises/cough production
MET Intensity as % of 5 MET Max

<table>
<thead>
<tr>
<th>Task</th>
<th>MET</th>
<th>% of 5 METS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baking</td>
<td>2.1</td>
<td>42</td>
</tr>
<tr>
<td>Cleaning</td>
<td>3.6</td>
<td>72</td>
</tr>
<tr>
<td>Eating</td>
<td>1.4</td>
<td>28</td>
</tr>
<tr>
<td>Food shopping</td>
<td>3.5</td>
<td>70</td>
</tr>
<tr>
<td>Card play</td>
<td>1.4</td>
<td>28</td>
</tr>
<tr>
<td>Walk 2.5mph</td>
<td>2.5</td>
<td>50</td>
</tr>
</tbody>
</table>

Acute/Inpatient Treatment Parameters

- **Patient/family education**
 - Self monitoring
 - Follow up activities
- **Pharmacological management**
- **Risk factor behavior modification**
 - Smoking
 - Stress reduction/relaxation; hostility management; depression
 - Diet
 - Controlled substances

Acute/Inpatient Treatment Parameters

- **Sternotomy precautions post op**
 - No lifting > 5-10 lbs for 4-6 wks
 - No driving 4-6 wks
- **No WB on UE**
 - Rolling walker not preferred, but ok if needed for balance
- **Monitor isometrics (avoid valsalva)**
- **HR <= 120 bpm or 20-30 bpm over resting rate w/ exercise**
 - RHR 90-100 bpm
 - Don’t consider rate limiting medications
- **Must consider ECG reading, hemodynamics, symptoms**
Acute/Inpatient Treatment Parameters

- MI’s:
 - 7 day window of greatest risk
 - Avoid isometrics, Valsalva
- CABG:
 - Pain/anxiety of intubation, insertion/removal of tubes
 - Post anesthesia effects
 - Hypoxia (heart/lung), memory, personality
- Pacemakers: Ltd. movement for 4 wks

Acute Phase: Contraindications to Continuing Treatment

- Unusual heart rate increase
 - >50bpm
- Hypertensive response to activity
 - >210mmHg SBP
 - >100mm Hg DBP
- Drop in SBP >10 mm Hg w/ low level exercise
- Signs of pallor, cold sweat, ataxia
- Symptoms w/ activity
 - Angina 1+/4
 - Dyspnea 2+/4
 - Excessive fatigue
 - Mental confusion/dizziness
 - Severe leg claudication 2+/4
 - Changing heart sounds e.g. new murmurs
 - ECG abnormality
 - ST segment changes
 - Coupled/ectopic PVCs

Post Surgical Issues

- Head and Neck Pain
 - Cervical-intubation, cervical extension
 - Headaches-drug induced (NTG, heparin)
 - Headaches- occipital n. irritation or trapezius spasm
 - Headaches- decreased visual acuity
- UE
 - Brachial plexus (8% of pts.) injury from clavicle & 1st rib depression(chest cracked), lat deviation/ext of neck
 - Peripheral neuropathies (6-13% of pts)
Post Surgical Issues

- **Thorax:**
 - Unstable sternum
 - Asymmetric sternum
 - Non-union of sternum - watch for purulent drainage
 - Costal cartilage pain (ribs 2-5)

- **LE:**
 - N. injuries (3% of pts.) - Saphenous or peroneal
 - Incisional pain/swelling in knee joint

Sub-Acute/Conditioning: Phase II

- Upon discharge from IP acute (Phase I)
 - Home (HHA), SNF, OP, community setting
 - May not start formal program until 6 weeks post incident
 - May start 24-72 hrs. post discharge
 - Follows low-level monitored stress test & progresses to monitored maximal stress test
 - Monitored/supervised ambulatory phase
 - 3-7 times/wk
 - Generally lasts 6-12 wks*
 - Progress to 1/week

*AACVPR guidelines combine Phase II and III as conditioning/training phase - lasts 3-6 months

Sub-Acute/Conditioning

- Symptoms, HR, BP, †ex tolerance, †quality of life
- Education, secondary prevention of disease emphasized
 - Self monitoring
 - Risk factor reduction
- Don’t mix healthy and patients w/ pathology
- IEP to meet patient’s needs, limits
Sub-Acute/Conditioning

- Endurance/conditioning
 - Establish mode, frequency, duration, intensity
 - Progressive (graded activity) exercise
 - Begin 15 min/session, progress to 45-60 min/session
 - RPE 12-16
 - Specific to patient response e.g. dyspnea, angina, RPE scales, physiological signs

- Progressive (graded activity) exercise
 - Begin 15 min/session, progress to 45-60 min/session
 - RPE 12-16

- Specific to patient response e.g. dyspnea, angina, RPE scales, physiological signs

Sub-Acute/Conditioning

- Determine baseline intensity (THR)
 - Training % x 220-age (general population)
 - Training % 60-70% for Phase II
 - Karvonen formula: (MHR-RHR) x training% + RHR
 - May be aggressive for Phase II cardiac pt:
 - Fit individuals > 40 use 205-age x training %
 - RPE’s
 - MET’s
 - VO2 max
 - Ventilatory threshold
- Medication effects
- Use warm-up/cool down

Sub-Acute/Conditioning

- Relaxation, energy conservation
 - Yoga, TM, biofeedback
- Breathing exercises
- Flexibility
- Progress to resistive
 - 30-50% 1RM; 1-3 lb wts; light theraband
 - Closely monitored
 - SBP > 160 mmHg; DBP > 100 mmHg needs further assessment - not absolute contraindication (AACVPR guidelines)
Sub-Acute/Conditioning

- Family/patient education
 - Self monitoring
 - Risk factors
 - Safety precautions

Intensive Rehabilitation: Phase III

- Progress to training/intensive rehab program
- Performed under supervised conditions i.e.
 - 1xwk for 6-12 months
 - Progress to 1x mo
 - 30-50 min session
 - High level exercise conditioning phase
 - Initiate resistance training
 - Exercise at 60-85% of MHR, obtained via max stress (symptom limited) test results

- Interval vs. circuit training
 - Can increase work loads w/ interval
 - Encourage camaraderie/social aspects of training

- Functional activities
 - Strength training w/ aerobic exercise
 - Large muscle groups vs. small muscle groups
 - 3 sets; 12-15 reps; 2-3xwk.
 - 30-50% 1RM
 - 12-16 on RPE scale
 - peripheral m. strength/endurance, ex tolerance, cardiopulmonary function & symptoms
 - 5 weeks post MI
 - 8 weeks post CABG
Maintenance/Prevention Program Phase IV:

- High risk individuals
- Continuation of Phase II/III patients
 - >12 months
- Preventive program pre-moribidity
- Life long commitment to exercise
 - Independent compliance with lifestyle modifications including diet, exercise, stress reduction, substance abuse

Individualized Exercise Plan: Summary (Hillegass, 2011)

- Exercise should be specific to patient’s daily needs, interests
 - Incorporate fun, camaraderie, competition
- Aerobic exercise prescription:
 - Mode: Functional, large muscle groups
 - Intensity: May use HR, perceived exertion
 - Duration: start with short intervals 2-5 min, progress to 30-45 min
 - Frequency: Start w/ short intervals multiple times/day

- Those who exercise 20-30 minutes, progress to daily 5-7xweek

- Resistance training
 - Avoid strain, exhale during exertion
 - Weight belt 30-50% 1RM
 - 8-10 repetitions of each muscle group

- Flexibility
 - Assess for limitations
 - UE; LE; hamstrings and gastrocs
Individualized Exercise Plan: Summary
(Hillegass, 2011)

- **Education/Self Monitoring**
 - HR, RPE, dyspnea
 - Weight self daily if have CHF
 - Understand signs/symptoms of angina vs musculo-skeletal and/or systemic pain

Patient Progression

- Patient specific within pathology guidelines
 - Healing process: cardiac muscle; post op; sternum
 - Physiological response to activity
 - Medical status; complications
 - Patient pre-existing, co-morbidities
- **Treatment parameters**
 - Increase duration, intensity, frequency
 - Change mode

Outcome & Quality of Life Measures: Cardiac Specific

- **Minnesota Living with Heart Failure**
 - Measures physical, socioeconomic, psychological impairment
- **Seattle Angina Questionnaire (SAQ)**
 - Measures limitations, angina stability, frequency, treatment satisfaction, disease perception
- **Exercise as outcome predictor of Q of L**
 - Quad strength shown to be powerful predictor of Q of L for pts with CHF (Ball, Michel, Cahalin, 1997)
 - Body weight also predictive (Cahalin, Semigran, Kacmarek, 1997)
Outcome & Quality of Life Measures: Functional Measures

- PMADL-8 associated with CHF disease severity
 - To assess disease-specific functional limitations as predictor of CHF severity (Shimizu, et al., 2009)
- Duke Activity Status Index (DASI)
 - Correlates with Vo2max
- NYHA scale
- BORG scale
- 6 or 12 minute walk tests

General Red Flags: Contraindications/Precautions

- Acute/recent MI
- Angina
- Thrombus
- Pericarditis
- Rapid weight gain or edema
- EtOH hangover
- Sunburn
- Heavy food intake

Precautions/Contraindications to PT

- Moderate to severe aortic stenosis
- Medications effect on response: beta blockers, diuretics
- Uncontrolled diabetes
 - Blood sugar > 300
- Symptomatic CHF/pulmonary edema
- Resting ST displacement>2 mm
- Post ‘long bone’ surgery
Precautions/Contraindications to PT

- Incisional pain
- Dissecting aneurysm
- Persistent hypotension
- Acute fever/infection
- Thrombophlebitis

Precautions & Contraindications to Exercise or Exertion *

- Increased HR over prescribed limit
 - Don’t start if >120 at rest
 - HR > 20 over RHR w/ post MI
 - HR > 30 over RHR w/ post CABG
- Significant dyspnea
- Excessive fatigue
- Resting systolic > 200 or diastolic > 110
- Marked change in BP w/ exertion
 - Orthostatic drop SBP =>20 mm Hg
 - DBP of >10-20 mm Hg
 - Decrease in BP w/ increasing workloads
*ACSM & AACVPR Guidelines

Cardiac Treatment: Absolute Contraindications

- Rapid atrial rhythm
- Serious arrhythmias, conduction defects
- Organ system failure
- Uncontrolled hypertension
- Other disease/illness that precludes exercise
- Active inflammatory conditions, fever/infection
- Acute/severe congestive heart failure
- Unstable angina
- Unstable hemodynamics
 - Falling BP w/ exercise
 - Persistent hypotension (<90 mmHg SBP)
 - 2nd/3rd degree heart block (leads to sudden death)
Criteria for Termination of Treatment

- Fatigue
- Light headedness, confusion
- Ataxia
- Pallor, cyanosis, dyspnea, nausea
- Excessive sweating, flushing
- Angina onset w/ activity
- Decreased HR w/ increase or no change in work load (> 10bpm)
- DBP =/>110 mm Hg
- Decrease in SBP > 10mm hg during exercise

Criteria for Termination of Treatment

- Maximal SOB/reaching ventilatory maximum (RPE/RR)
- Fall in PaO2 of > 20 mmHg or PaO2 < 55 mmHg
- Rise in PaCO2 > 10 mmHg or PaCO2 > 65 mmHg
- Cardiac ischemia or arrhythmias
 - Frequent PVC’s
 - Ventricular arrhythmias
- Leg Pain
 - Check for DVT; color, temp, pulses
- Signs of insufficient cardiac output

Assessment: Case Study

- The patient is a 68 year old black male referred for physical therapy prior to discharge home from the acute care hospital. He was admitted following a hip contusion sustained when he fainted at home 2 days ago. The patient is weight bearing, but presents with pain (7/10) at the hip on weight bearing. He has been OOB for 30 minutes BID and requires contact guard and assistance to ambulate without a device to the bathroom. He has a history of coronary artery disease and had a MI one year ago.
- Referral: Evaluate and treat
- Stay or Go?
Chart Review

- PMH: HTN, hyperlipidemia, MI prior year, CAD
- PSH: Appendectomy
- Psychosocial hx: The pt. denies smoking, alcohol and drug use
- Family Situation: He is retired and lives with his wife in a duplex with bedrooms upstairs. He drives and does chores around the house.
- Medications: Propranolol (inderal), furosemide (lasix), esomepraxole (nexium)
- V/S: Temp. 99 degrees, B/P: 155/84, RHR: 102, RR: 22; SpO2: 90% at rest

Consider the Following:

- What assessments would you do with this patient?
 - What findings are significant and what impact will they have on this patient’s plan of care
 - What are the patient’s primary problems, what practice pattern(s) would you apply?
- What treatment interventions would you recommend for this patient in this setting?
 - What treatment parameters would you use?
 - Frequency, intensity, duration, mode
- What recommendations would you make for this patient prior to his discharge?
- How might this POC differ in the home setting? In the outpatient setting?

Final Thoughts

Know your patient when developing a treatment plan that will meet the patient’s needs...

Questions

Contact information:
blitwin@nova.edu

No portion of this presentation can be reproduced without written permission of Bini Litwin PT DPT PhD MBA

Resources

- Collet & Liljestrand 1924; Miles DS et al. JAP 57:366-70, 1984
- Gappmair D et al. MSBE 33:S130 #740
- Guide to PT Practice: APTA 3rd Ed.
- Jones and Campbell N Eng J Med 293:541 1975
- NHLBI, National Heart Lung and Blood Institute
Resources

- O’Sullivan & Schmitz. Physical Rehabilitation: Assessment and Treatment, 9th Ed. FA Davis Co.
- Sullivan & Schmitz. Physical Rehabilitation: Assessment and Treatment; 5th Ed. FA Davis Co.
- Sakaia MM, Ex Sport Science Reviews Vol 14, 1988
- Taylor, Brown, et al., ACP Journal Club, Nov-Dec, 2004; AHA, 2005
- University of Iowa Hospitals and Clinics, 200 Hawkins Drive, Iowa City, Iowa 52242

Internet Resources

- http://www.yourdiseaserisk.wustl.edu/
- http://nursing411.org/Courses/MD0531_Taking_Vital_Signs/3-4_taking_vital_signs
- http://www.med.ucla.edu/wilkes/Homebanner.htm
- http://meded.ucsd.edu/clinicalmed/lung.htm